Math, asked by gauthamjyothish, 2 months ago

pls answer me fast fast!!!!!!!​

Attachments:

Answers

Answered by kaurcindrella4
1

Answer:

The answer is in above attachment

Hope it helps you

Step-by-step explanation:

please Mark as brainliest answer

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a _1 = 4

and

\rm :\longmapsto\:a _n = 4a _{n - 1} \:  +  \: 3 \:  \: where \: n > 1 -  -  - (1)

 \red{\bf :\longmapsto\:To \: find \: a _2}

Substituting n = 2 in equation (1), we get

\rm :\longmapsto\:a _2 = 4a _{2 - 1} \:  +  \: 3 \:

\rm :\longmapsto\:a _2 = 4a _{1} \:  +  \: 3 \:

\rm :\longmapsto\:a _2 = 4 \times 4 \:  +  \: 3 \:

\rm :\longmapsto\:a _2 = 16 \:  +  \: 3 \:

 \red{\rm :\longmapsto\:a _2 = 19}

 \red{\bf :\longmapsto\:To \: find \: a _3}

Substituting n = 3 in equation (1), we get

\rm :\longmapsto\:a _3 = 4a _{3 - 1} \:  +  \: 3 \:

\rm :\longmapsto\:a _3 = 4a _{2} \:  +  \: 3 \:

\rm :\longmapsto\:a _3 = 4 \times 19 \:  +  \: 3 \:

\rm :\longmapsto\:a _ 3 = 76 \:  +  \: 3 \:

 \red{\rm :\longmapsto\:a _ 3 = 79 \: }

 \red{\bf :\longmapsto\:To \: find \: a _4}

Substituting n = 4 in equation (1), we get

\rm :\longmapsto\:a _4 = 4a _{4 - 1} \:  +  \: 3 \:

\rm :\longmapsto\:a _4 = 4a _{3} \:  +  \: 3 \:

\rm :\longmapsto\:a _4 = 4 \times 79 \:  +  \: 3 \:

\rm :\longmapsto\:a _4 = 316 \:  +  \: 3 \:

 \red{\rm :\longmapsto\:a _ 4 = 319 \: }

 \red{\bf :\longmapsto\:To \: find \: a _5}

Substituting n = 5 in equation (1), we get

\rm :\longmapsto\:a _5 = 4a _{5 - 1} \:  +  \: 3 \:

\rm :\longmapsto\:a _5 = 4a _{4} \:  +  \: 3 \:

\rm :\longmapsto\:a _5 = 4 \times 319 \:  +  \: 3 \:

\rm :\longmapsto\:a _5 = 1276 \:  +  \: 3 \:

 \red{\rm :\longmapsto\:a _ 5 = 1279 \: }

Additional Information :-

In an AP series,

\rm :\longmapsto\:a _n = a + (n - 1)d

\rm :\longmapsto\:S_n = \dfrac{n}{2}\bigg(2a + (n - 1)d\bigg)

\rm :\longmapsto\:S_n = \dfrac{n}{2}\bigg(a + a _n\bigg)

In a GP series,

\rm :\longmapsto\:a _n =  {ar}^{n - 1}

\rm :\longmapsto\:S_n = \dfrac{a( {r}^{n}  - 1)}{r - 1}  \: where \: r  \: \ne \: 1

\rm :\longmapsto\:S_ \infty  = \dfrac{a}{1 - r}  \: where  \:  |r| < 1

Similar questions