Math, asked by sriharini0520, 10 months ago

pls answer me for this question​

Attachments:

Answers

Answered by TrickYwriTer
3

Step-by-step explanation:

 \bold{Given -} \\  \huge{  \circ +  \triangle} = 8 \: \small{ ......(a)} \\  \huge { \circ  -   \triangle} = 4  \: \small{ ......(b)}\\  \huge{ \star  + \square } = 12  \: \small{ ......(c)}\\  \huge { \star -  \square } =  \square  \: \small{ ......(d)}\\   \huge{\square  +  \square} =  \star\small{ ......(e)} \\  \\  \bold{To \: find - } \\ Value \: of \:  \star , \:  \circ , \:  \square , \:  and \:  \triangle

 \bold{Now, } \\ Adding \:  \bold{(a)} \:  and \:  \bold{(b)} \\  \\  \huge{ \circ +   \cancel{\triangle} = 8}  \\  \huge{ \circ  -    \cancel{\triangle} = 4}  \\  \underline{ \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: } \\  \huge{2 \circ} = 12 \\  { \circ} =  \cancel{ \frac{12}{2} } \\  \huge \circ = 6 \\   \\  \bold{Now,} \\ Substituting \: the \: value \: of \:  \circ \: on \: (a) \\  \huge{ \circ +  \triangle = 8} \\ 6 +  \triangle = 8  \\   \triangle = 8 - 6 \\  \huge{\triangle = 2}

 \bold{Now,} \\  \huge{\square +  \square =  \star} \\   \huge{2 \square =  \star} \\  \huge{ \square =   \frac{ \star}{2} } \\  \\  \bold{Now,} \\ Substituting \: the \: value \: of \:  \square \: on \: (c) \\  \\  \huge{ \star +  \square = 12} \\  \huge{ \star +  \frac{ \star}{2} } = 12 \\   \frac{2 \star +  \star}{2}  = 12 \\   \frac{  3\star}{2}  = 12 \\  3 \star = 24 \\  \star =   \cancel{\frac{24}{3} } \\  \huge{ \star = 8} \\  \\  \bold{Now,} \\ Substituting \: the \: value \: of \:   \star \: on \\  \square =  \frac{ \star}{2}  \\    \square =   \cancel{\frac{8}{2} } \\  \huge{ \square = 4}

Hence,  \\ The \: value \: of \\   \huge{\star =8 } \\  \huge{ \square = 4} \\  \huge{ \triangle = 2} \\  \huge{ \circ = 6}

Similar questions