Math, asked by shivabalan24, 1 year ago

Pls answer me mates very very urgent

Attachments:

Answers

Answered by siddhartharao77
5

Given, x + (1/x) = 4.

On cubing both sides, we get

⇒ (x + 1/x)^3 = (4)^3

⇒ x^3 + 1/x^3 + 3(x + 1/x) = 64

⇒ x^3 + 1/x^3 + 3(4) = 64

⇒ x^3 + 1/x^3 + 12 = 64

⇒ x^3 + 1/x^3 = 64 - 12

⇒ x^3 + 1/x^3 = 52.


Therefore, the answer is Option (2) - cdba.



Hope it helps!


shivabalan24: Will u answer some more questions
shivabalan24: .plssssss
siddhartharao77: Will try to answer!
shivabalan24: Then flw me
shivabalan24: I will post my questions
Answered by anonymous64
1
<b><u><i>Hey mate!! Here's your answer</i></u></b>
______________________________

\huge{Given}

x + \frac{1}{x} = 4

\huge{To\: Find}

 {x}^{3} + ( \frac{1}{x} ) ^{3}

\huge{Solution}

x + \frac{1}{x} = 4
Now, cubing both sides,

( {x} + \frac{1}{x} )^{3} = ({4})^{3}

 = > (x + \frac{1}{x} ) ^{3} = 64


Now, using the formula (a+b)³ = a³+b³+3ab(a+b), we get


 = > x ^{ 3} + ( \frac{1}{x} ) ^{3} + 3 \times x \times \frac{1}{x} (x + \frac{1}{x} ) = 64


Cancelling 3 × x × 1/x = 3 × 1 = 3


 = > {x}^{3} + ( \frac{1}{x} ) ^{3} + 3(x + \frac{1}{x} ) = 64


Now, x + 1/x = 4. Then,


 = > x ^{3} + ( \frac{1}{x} ) ^{3} + 3(4) = 64

 = > {x}^{3} + ( \frac{1}{x} ) ^{3} + 12 = 64

 = > {x}^{3} + ( \frac{1}{x} ) ^{3} = 64 - 12

 = > {x}^{3} + ( \frac{1}{x} ) ^{3} = 52

Then, x³ + 1/x³ = 52

\mathfrak{\blue{Finally,}}

Your answer is -

\boxed{\mathcal{\red{\bold{(2) \: cdba}}}}
______________________________

\huge{\mathfrak{\green{\bold{Thank \: you}}}}
Similar questions