Physics, asked by karthikeyavedula72, 10 months ago

pls answer me this question fast....​

Attachments:

Answers

Answered by amitkumar44481
35

AnsWer :

2 seconds.

SolutioN :

Let,

  • acceleration ( a )
  • u initial
  • v final
  • m mass

→ Force / mass = 20 - 10 / 2 + 1 = 10 / 3.

 \tt \: F_{net}\:  = m \times a.

 \tt  : \implies  a = \frac{F_{net}}{mass}

 \tt  : \implies a =  \frac{10}{2 + 1}

 \tt  : \implies a =  \frac{10}{3} \: m / {s}^{2} .

Now,

 \tt S = ut +  \dfrac{1}{2}  \times a  { t}^{2}

Where as,

  • S = 20/3
  • u = 0.
  • a = 10/3.
  • t = ?

 \tt   :  \implies\dfrac{20}{3}  = 0 \times t +  \dfrac{1}{2}  \times  \dfrac{10}{3} \times    { t}^{2}

 \tt   :  \implies\dfrac{20}{3}  = 0 \times t +  \dfrac{1}{  \cancel2}  \times  \dfrac{ \cancel{10}}{3} \times    { t}^{2}

 \tt   :  \implies\dfrac{ \cancel{20}}{ \cancel3}  =  \dfrac{ \cancel5}{ \cancel3} \times    { t}^{2}

 \tt   :  \implies  {t}^{2}  = 4.

 \tt   :  \implies t =  \pm2.

★ Negative ignore,

→ t = 2.

Therefore, time taken to become distance between 0 is 2 seconds.

Attachments:
Similar questions