Math, asked by sash1506, 11 months ago

pls answer my question ​

Attachments:

Answers

Answered by Rohit18Bhadauria
1

Things to Know before Solving the questions:

For a quadratic polynomial,

  • \bf{Sum\:of\:Zeroes=\dfrac{-Coefficient\:of\:x}{Coefficient\:of\:x^{2}}}
  • \bf{Product\:of\:Zeroes=\dfrac{Constant\:Term}{Coefficient\:of\:x^{2}}}

\rule{180}{2}

(2)

Given:

  • Polynomial p(x)=2x²+px+4 whose one zero is 2

To Find:

  • Other zero of polynomial
  • Value of p

Solution:

Let the other zero be 'a', then

\longrightarrow\sf{(2)(a)=\dfrac{4}{2}}

\longrightarrow\sf{a=\dfrac{4}{4}}

\longrightarrow\sf{a=1}

Now,

\longrightarrow\sf{Sum\:of\:Zeroes=\dfrac{-p}{2}}

\longrightarrow\sf{2+1=\dfrac{-p}{2}}

\longrightarrow\sf{3=\dfrac{-p}{2}}

\longrightarrow\sf{p=-3\times2}

\longrightarrow\sf\pink{p=-6}

Hence, other zero is 1 and value of p is -6.

\rule{180}{2}

(3)

Given:

  • Polynomial x²-p(x+1)+c whose zeroes are α and β
  • (α+1)(β+1)=0

To Find:

  • Value of c

Solution:

Given polynomial,

x²-p(x+1)+c

x²-px-p+c

Now,

\longrightarrow\sf{Sum\:of\:Zeroes=\dfrac{-(-p)}{1}}

\longrightarrow\sf{\alpha+\beta=p------(1)}

Also,

\longrightarrow\sf{Product\:of\:Zeroes=\dfrac{-p+c}{1}}

\longrightarrow\sf{\alpha\beta=-p+c------(2)}

Now, it is given that

(α+1)(β+1)=0

α(β+1)+1(β+1)=0

αβ+α+β+1=0

From (1) and (2)

-p+c+p+1=0

c+1=0

c= -1

Hence, value of c is -1.

\rule{180}{2}

(4)

Given:

  • Polynomial 3x²-2(4x+k)+1
  • One zero of given polynomial is 7 times of other

To Find:

  • Both the zeroes of the polynomial
  • Value of 'k'

Solution:

Given polynomial,

3x² -2(4x+k)+1

3x² -8x-2k+1

Let one zero be α and other zero be β, where α > β

So,

α= 7β

Now,

\longrightarrow\sf{Sum\:of\:Zeroes=\dfrac{-(-8)}{3}}

\longrightarrow\sf{\alpha+\beta=\dfrac{8}{3}------(1)}

\longrightarrow\sf{7\beta+\beta=\dfrac{8}{3}}

\longrightarrow\sf{8\beta=\dfrac{8}{3}}

\longrightarrow\sf{\beta=\dfrac{1}{3}}

On putting value of β in (1), we get

\longrightarrow\sf{\alpha+\dfrac{1}{3}=\dfrac{8}{3}}

\longrightarrow\sf{\alpha=\dfrac{8}{3}-\dfrac{1}{3}}

\longrightarrow\sf{\alpha=\dfrac{8-1}{3}}

\longrightarrow\sf{\alpha=\dfrac{7}{3}}

Also,

\longrightarrow\sf{Product\:of\:Zeroes=\dfrac{-2k+1}{3}}

\longrightarrow\sf{\alpha\beta=\dfrac{-2k+1}{3}}

\longrightarrow\sf{\dfrac{7}{3}\times\dfrac{1}{3} =\dfrac{-2k+1}{3}}

\longrightarrow\sf{\dfrac{7\times3}{3\times3}=-2k+1}

\longrightarrow\sf{\dfrac{7}{3}=-2k+1}

\longrightarrow\sf{7=3(-2k+1)}

\longrightarrow\sf{7=-6k+3}

\longrightarrow\sf{6k=3-7}

\longrightarrow\sf{6k=-4}

\longrightarrow\sf{k=\dfrac{-4}{6}}

\longrightarrow\sf{k=\dfrac{-2}{3}}

Hence, both zeroes are  \sf{\dfrac{7}{3}} and \sf{\dfrac{1}{3}} and value of k is \sf{\dfrac{-2}{3}}.

\rule{180}{2}

(5)

Given:

  • Polynomial 2x²-5x-(2k+1)
  • One zero of given polynomial is twice of other

To Find:

  • Both the zeroes of the polynomial
  • Value of 'k'

Solution:

Given polynomial,

2x² -5x-(2k+1)

2x² -5x-2k-1

Let one zero be α and other zero be β, where α > β

So,

α= 2β

Now,

\longrightarrow\sf{Sum\:of\:Zeroes=\dfrac{-(-5)}{2}}

\longrightarrow\sf{\alpha+\beta=\dfrac{5}{2}------(1)}

\longrightarrow\sf{2\beta+\beta=\dfrac{5}{2}}

\longrightarrow\sf{3\beta=\dfrac{5}{2}}

\longrightarrow\sf{\beta=\dfrac{5}{6}}

On putting value of β in (1), we get

\longrightarrow\sf{\alpha+\dfrac{5}{6}=\dfrac{5}{2}}

\longrightarrow\sf{\alpha=\dfrac{5}{2}-\dfrac{5}{6}}

\longrightarrow\sf{\alpha=\dfrac{15-5}{6}}

\longrightarrow\sf{\alpha=\dfrac{10}{6}}

Also,

\longrightarrow\sf{Product\:of\:Zeroes=\dfrac{-2k-1}{2}}

\longrightarrow\sf{\alpha\beta=\dfrac{-2k-1}{2}}

\longrightarrow\sf{\dfrac{10}{6}\times\dfrac{5}{6} =\dfrac{-2k-1}{2}}

\longrightarrow\sf{\dfrac{50}{36}=\dfrac{-2k-1}{2}}

\longrightarrow\sf{\dfrac{50\times2}{36}=-2k-1}

\longrightarrow\sf{\dfrac{50}{18}=-2k-1}

\longrightarrow\sf{50=18(-2k-1)}

\longrightarrow\sf{50=-36k-18}

\longrightarrow\sf{36k=-50-18}

\longrightarrow\sf{36k=-68}

\longrightarrow\sf{k=\dfrac{-68}{36}}

\longrightarrow\sf{k=\dfrac{-17}{9}}

Hence, both zeroes are  \sf{\dfrac{10}{6}} and \sf{\dfrac{5}{6}} and value of k is \sf{\dfrac{-17}{9}}.

Similar questions