Math, asked by meenaengineer13, 3 months ago

pls answer my question plese plese​

Attachments:

Answers

Answered by WildCat7083
4

896789886 \div  256

\begin{array}{l}\phantom{256)}0\phantom{3}\\256\overline{)896789886}\\\end{array}

Since 89 is less than 256, use the next digit 6 from dividend 896789886 and add 0 to the quotient

\begin{array}{l}\phantom{256)}00\phantom{4}\\256\overline{)896789886}\\\end{array} \\   \\  \sf \:  Use  \: the \:  3^{rd} \:  digit \:  6  \: from \:  dividend \:  896789886 \\  \\  \begin{array}{l}\phantom{256)}00\phantom{5}\\256\overline{)896789886}\\\end{array}

Find closest multiple of 256 to 896. We see that 3 \times 256 = 768 is the nearest. Now subtract 768 from 896 to get reminder 128. Add 3 to quotient.

\begin{array}{l}\phantom{256)}003\phantom{6}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}128\\\end{array} \\  \\ \begin{array}{l}\phantom{256)}003\phantom{7}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\end{array}

Find closest multiple of 256 to 1287. We see that 5 \times 256 = 1280 is the nearest. Now subtract 1280 from 1287 to get reminder 7. Add 5 to quotient.

\begin{array}{l}\phantom{256)}0035\phantom{8}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}7\\\end{array}  \\  \\ \begin{array}{l}\phantom{256)}0035\phantom{9}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}78\\\end{array}

Since 78 is less than 256, use the next digit 9 from dividend 896789886 and add 0 to the quotient

\begin{array}{l}\phantom{256)}00350\phantom{10}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}78\\\end{array}

Find closest multiple of 256 to 789. We see that 3 \times 256 = 768 is the nearest. Now subtract 768 from 789 to get reminder 21. Add 3 to quotient.

 \begin{array}{l}\phantom{256)}003503\phantom{12}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}789\\\phantom{256)}\underline{\phantom{999}768\phantom{999}}\\\phantom{256)9999}21\\\end{array} \\ \\ \begin{array}{l}\phantom{256)}003503\phantom{13}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}789\\\phantom{256)}\underline{\phantom{999}768\phantom{999}}\\\phantom{256)9999}218\\\end{array}

Since 218 is less than 256, use the next digit 8 from dividend 896789886 and add 0 to the quotient

\begin{array}{l}\phantom{256)}0035030\phantom{14}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}789\\\phantom{256)}\underline{\phantom{999}768\phantom{999}}\\\phantom{256)9999}218\\\end{array}

Find closest multiple of 256 to 2188. We see that 8 \times 256 = 2048 is the nearest. Now subtract 2048 from 2188 to get reminder 140. Add 8 to quotient.

\begin{array}{l}\phantom{256)}00350308\phantom{16}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}789\\\phantom{256)}\underline{\phantom{999}768\phantom{999}}\\\phantom{256)9999}2188\\\phantom{256)}\underline{\phantom{9999}2048\phantom{9}}\\\phantom{256)99999}140\\\end{array}

Find closest multiple of 256 to 1406. We see that 5 \times 256 = 1280 is the nearest. Now subtract 1280 from 1406 to get reminder 126. Add 5 to quotient.

\begin{array}{l}\phantom{256)}003503085\phantom{18}\\256\overline{)896789886}\\\phantom{256)}\underline{\phantom{}768\phantom{999999}}\\\phantom{256)}1287\\\phantom{256)}\underline{\phantom{}1280\phantom{99999}}\\\phantom{256)999}789\\\phantom{256)}\underline{\phantom{999}768\phantom{999}}\\\phantom{256)9999}2188\\\phantom{256)}\underline{\phantom{9999}2048\phantom{9}}\\\phantom{256)99999}1406\\\phantom{256)}\underline{\phantom{99999}1280\phantom{}}\\\phantom{256)999999}126\\\end{array}

Since 126 is less than 256, stop the division. The reminder is 126. The topmost line 003503085 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3503085.

 \sf \: \text{Quotient: }3503085 \\ \text{Reminder: }126

________________________

 \sf \: @WildCat7083

Similar questions