Math, asked by abinashkaran09, 8 months ago

pls answer my questions​

Attachments:

Answers

Answered by veda124
1

Answer:

Hope it helps you!!!! !!

Attachments:
Answered by Asterinn
3

Given :

  • x²+y² = 25

  • xy = 12

To find :

 {x}^{ - 1}  +  {y}^{ - 1}

Solution :

 \implies {x}^{ - 1}  +  {y}^{ - 1}  =  \dfrac{1}{x}  +  \dfrac{1}{y}

 \implies   \dfrac{1}{x}  +  \dfrac{1}{y}  =  \dfrac{x + y}{xy}

value of xy is given as 12.

We have to find out the value of x+y.

\implies \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

put :-

  • x²+y²= 25

  • xy = 12

\implies \:  {(x + y)}^{2}  =  25  +( 2 \times 12)

\implies \:  {(x + y)}^{2}  =  25  +24

\implies \:  {(x + y)}^{2}  =  49

\implies \:  {(x + y)}  =   \sqrt{49}

\implies \:  {(x + y)}  = \pm  7

therefore now :-

 \implies  \dfrac{x + y}{xy}  =  \dfrac{\pm7}{12}

Answer :

 \implies   {x}^{ - 1}  +  {y}^{ - 1} =  \dfrac{\pm7}{12}

_______________________

\large\bf\red{Learn\:More}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

________________________

Similar questions