pls, answer properly........
If sin θ + sin² θ + sin³ θ = 1, prove that cos⁶ θ - 4cos⁴ θ + 8cos² θ = 4
Answers
Answered by
7
Let : sin θ + sin² θ + sin³ θ = 1................ (1)
Then : sin θ + sin³ θ = 1 - sin² θ
......... sin θ ( 1 + sin² θ ) = cos² θ
......... sin θ ( 1 + 1 - cos² θ ) = cos² θ
......... sin θ ( 2 - cos² θ ) = cos² θ ...........(2)
Squaring both sides of (2),
sin² θ ( 2 - cos² θ )² = cos^4 θ
( 1 - cos² θ )( 4 - 4 cos² θ + cos^4 θ ) = cos^4 θ
( 4 - 4 cos² θ + cos^4 θ ) - 4 cos² θ + 4 cos^4 θ - cos^6 θ = cos^4 θ
4 - 8 cos² θ + 5 cos^4 θ - cos^6 θ = cos^4 θ
4 = cos^4 θ + 8 cos² θ - 5 cos^4 θ + cos^6 θ
Rearranging the above equation,
cos^6 θ - 4 cos^4 θ + 8 cos² θ = 4 .............................. Ans.
Hope it's Helpful for you.......
Answered by
7
Step-by-step explanation:
Similar questions