Math, asked by bintosep102008, 11 months ago

pls, answer properly........

If sin θ + sin² θ + sin³ θ = 1, prove that cos⁶ θ - 4cos⁴ θ + 8cos² θ = 4

Answers

Answered by Thûgłife
7

Let : sin θ + sin² θ + sin³ θ = 1................ (1)

Then : sin θ + sin³ θ = 1 - sin² θ

......... sin θ ( 1 + sin² θ ) = cos² θ

......... sin θ ( 1 + 1 - cos² θ ) = cos² θ

......... sin θ ( 2 - cos² θ ) = cos² θ ...........(2)

Squaring both sides of (2),

sin² θ ( 2 - cos² θ )² = cos^4 θ

( 1 - cos² θ )( 4 - 4 cos² θ + cos^4 θ ) = cos^4 θ

( 4 - 4 cos² θ + cos^4 θ ) - 4 cos² θ + 4 cos^4 θ - cos^6 θ = cos^4 θ

4 - 8 cos² θ + 5 cos^4 θ - cos^6 θ = cos^4 θ

4 = cos^4 θ + 8 cos² θ - 5 cos^4 θ + cos^6 θ

Rearranging the above equation,

cos^6 θ - 4 cos^4 θ + 8 cos² θ = 4 .............................. Ans.

Hope it's Helpful for you.......

Answered by rishabh1894041
7

Step-by-step explanation:

We \: have \\  =  sinx +  {sin}^{2}x  +  {sin}^{3}  x = 1 \\  = sinx +  {sin}^{3} x = 1 -  {sin}^{2} x \\  = sinx +  {sin}^{3} x =  {cos}^{2} x \\  = sinx(1  +  {sin}^{2} x) =  {cos}^{2} x \\  = sinx(2 -  {cos}^{2} x) =  {cos}^{2} x \\  =  {sin}^{2}x( {2 -  {cos}^{2}x) }^{2}   =   {cos}^{4} x \\  = (1 -  {cos}^{2} x)(4 +  {cos}^{4} x - 4 {cos}^{2} x) =  {cos}^{4} x \\  = 4 - 4 {cos}^{2} x +  {cos}^{4} x - 4 {cos}^{2} x + 4 {cos}^{4} x +  {cos}^{6} x =  {cos}^{4} x \\  =  {cos}^{6} x - 4 {cos}^{4} x + 8 {cos}^{2} x = 4 \\  \\ Hence \: proved \:  \\ Hope \: it \: will \: help \: you.

Similar questions