Math, asked by bhumikapatil, 11 months ago

pls answer question​

Attachments:

Answers

Answered by kailashmeena123rm
29

\huge \:  \red   \star \: {  \large \pink {  \underline\mathcal{ANSWER}} }  \:  \red\star \:  \:

option (d)

 \green{standered \: results}

  •  \footnotesize{ log_{ \: a}(a)  = 1}
  •  \footnotesize { log \:  {x}^{n}  = \: n \: log \: x }

 \green{ \small {solution}} \:

 \mathrm{given} \\ \small{ {x}^{y}  =  {e}^{x + y} }

on taking log on both sides

 \small{y  \: log(x)  = (x + y) log_{e}(e) }

now differentiate wrt x

 \small{ \frac{dy}{dx}  \: logx  \: + y \: (  \frac{1}{x}  )} \:  =   \small{\: 1 +  \frac{dy}{dx} } \\   \\  \small{\frac{dy}{dx} \: log x } \:  - \small{  \frac{dy}{dx}  \:  = 1 -  \frac{x}{y} }

 \frac{dy}{dx} \:  \small{ ( log(x)  - 1)} =  \small{ \frac{x - y}{x} }

 \frac{dy}{dx}  =  \frac{x - y}{x \:  \footnotesize{( log(x)  - 1)} }

hope it helps

Answered by renuhkkohli693
0

Step-by-step explanation:

Option D is ur correct answer ❤️❤️

Similar questions