Math, asked by rajatsaha14, 10 months ago

Pls answer question 21 vi, vii, viii
Pls answer fast and correct will mark you as brainliest.​

Attachments:

Answers

Answered by ayubsalimpatel
0

Good question I am answering the 4th question

Attachments:
Answered by Cosmique
6

Given :-

  • f(x)= ax² + bx + c
  • α and β are zeroes of f(x)

To find :-

\sf{(1)\bullet \frac{1}{a\alpha+b}+\frac{1}{a\beta+b} }

\sf{(2)\bullet \frac{\beta}{a\alpha + b} + \frac{\alpha}{a\alpha+b}}

\sf{(3)\bullet \:\: a\left( \frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}\right)+b\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)}

Solution :-

In the given quadratic polynomial f(x)

\boxed{\sf{\alpha+\beta=\frac{-b}{a}}\;\;...eqn(1)}

and

\boxed{\sf{\alpha\beta=\frac{c}{a}}\;\;...eqn(2)}

\rule{300}3

Solution (1)

\implies\sf{\frac{1}{a\alpha+b}+\frac{1}{a\beta+b}}\\\\

taking LCM

\implies\sf{\frac{a\beta+b+a\alpha+b}{a^2\alpha\beta+\alpha\;ab+\beta\;ab+b^2}}\\\\\implies \sf{\frac{a(\alpha+\beta)+2b}{a^2\alpha\beta+ab(\alpha+\beta)+b^2}}\\\\

using eqn (1) and (2)

\implies\sf{\frac{a(\frac{-b}{a})+2b}{a^2(\frac{c}{a})+ab(\frac{-b}{a})+b^2} }\\\\\boxed{\blue{\implies\sf{\frac{b}{ac}}}}

\rule{300}3

Solution (2)

\implies\sf{\frac{\beta}{a\alpha+b}+\frac{\alpha}{a\beta+b}}

Taking LCM

\implies\sf{\frac{\beta(a\beta+b)+\alpha(a\alpha+b)}{a^2\alpha\beta+ab\;\alpha+ab\;\beta+b^2} }\\\\\implies\sf{\frac{a\beta^2+b\beta+a\alpha^2+b\alpha}{a^2\alpha\beta+ab(\alpha+\beta)+b^2} }\\\\\implies\sf{\frac{a(\alpha^2+\beta^2)+b(\alpha+\beta)}{a^2\alpha\beta+ab(\alpha+\beta)+b^2} }\\\\\implies\sf{\frac{a((\alpha+\beta)^2-2\alpha\beta)+b(\alpha+\beta)}{a^2\alpha\beta+ab(\alpha+\beta)+b^2} }\\\\

using eqn (1) and (2)

\implies\sf{\frac{a((\frac{-b}{a})^2-2(\frac{c}{a}))+b(\frac{-b}{a})}{a^2(\frac{c}{a})+ab(\frac{-b}{a})+b^2} }\\\\\boxed{\blue{\implies\sf{\frac{-2}{a}}}}

\rule{300}3

Solution (3)

\implies\sf{a\left(\frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}\right)+b\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)}\\\\\implies\sf{a\left(\frac{\alpha^3+\beta^3}{\alpha\beta}\right)+b\left(\frac{\alpha^2+\beta^2}{\alpha\beta}\right )}\\\\\implies\sf{a\left(\frac{(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)}{\alpha\beta}\right)+b\left(\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}\right)}\\\\

using eqn (1) and (2)

\implies\sf{a\left(\frac{(\frac{-b}{a})^3-3(\frac{c}{a})(\frac{-b}{a})}{\frac{c}{a}}\right)+b\left(\frac{(\frac{-b}{a})^2-2(\frac{c}{a})}{\frac{c}{a}}\right)}\\\\\boxed{\blue{\implies\sf{b}}}

\rule{300}3

Similar questions