Math, asked by MahatmaGandhi11, 1 year ago

Pls....answer question 64

Attachments:

Answers

Answered by siddhartharao77
2

Answer:


Step-by-step explanation:

Given: \frac{x-3}{x-4}+\frac{x-5}{x-6}= \frac{10}{6}

=> 6(x - 3)(x-6)+6(x-5)(x-4)=10(x-4)(x-6)

=> 6x^2 - 54x + 108 + 6x^2 - 54x + 120 = 10x^2 - 100x + 240

=>12x^2 - 108x + 228 = 10x^2 - 100x + 240

=>12x^2-8x-12=10x^2

=>2x^2-8x-12=0

On comparing with ax^2 + bx + c = 0, a = 2, b = -8, c = -12.

∴ D= b² - 4ac

     = (-8)^2 - 4(2)(-12)

     = 64 + 96

     = 160.


(i)

=>x=\frac{-b+\sqrt{D}}{2a}

=>\frac{-(-8)+\sqrt{160}}{2(2)}

=>\frac{8+\sqrt{160}}{4}

=>\frac{8+4\sqrt{10}}{4}

=>\frac{4(2+\sqrt{10})}{4}

=>2+\sqrt{10}


(ii)

=>x=\frac{-b-\sqrt{D}}{2a}

=>\frac{-(-8)-\sqrt{160}}{2(2)}

=>\frac{8-\sqrt{160}}{4}

=>\frac{8-4\sqrt{10}}{4}

=>\frac{4(2- \sqrt{10})}{4}

=>2-\sqrt{10}


Therefore, the solutions are:

=> \boxed{2 +\sqrt{10}, 2-\sqrt{10}}


Hope it helps!

Answered by Anonymous
0

Bhai sorry but isse jyada ho hi nhi rha hai
Attachments:
Similar questions