Math, asked by tanu3478, 3 months ago

pls answer quickly . ​

Attachments:

Answers

Answered by Anonymous
92

{ \large{ \red{ \underline{ \pmb{ \frak{Given \: that....}}}}}}

➼ The perimeter of a square and a rectangle are same.

➼ The length and breadth of the rectangle are 10cm and 8cm respectively

{ \large{ \red{ \underline{ \pmb{ \frak{To  \: find....}}}}}}

➼ The perimeter of the rectangle

➼ The area of the square

{ \large{ \red{ \underline{ \pmb{ \frak{ Solution....}}}}}}

Here,

➱ We are said that the perimeter of the rectangle and a square are equal.

★ as we have been provided with the dimensions of the rectangle let's find its perimeter, to find the side of the square.

★ Then, Let's find the area of the square with the measurement of its side!

{ \large{ \red{ \underline{ \pmb{ \frak{Calculations....}}}}}}

Now,

↝ Let's find the perimeter of the rectangle

Formula : -

{ \pink { \boxed{ \frak{perimeter_{(rectangle)} = 2(l + b)}} \star}}

Where,

  • ↠L Stands for length
  • ↠ B stands for breadth

Here,

  • ↠ Length = 10cm
  • ↠ Breadth = 8cm

Putting the values,

{ : \implies} \rm \: perimeter _{(rectangle)} = 2(lenght + breadth)  \\ \\  \\ { : \implies} \rm \: perimeter _{(rectangle)} = 2(10 + 8)cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: perimeter _{(rectangle)} = 2 \times 18cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: perimeter _{(rectangle)} = 36cm ^{ \star} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Hence, The perimeter of the rectangle is 36cm

As we know that,

  • ↝ Perimeter of rectangle = Perimeter of square

So,

  • Perimeter of the square is 36cm

Now,

↝ Let's find the side of the square.

Formula : -

{ \pink { \boxed{ \frak{perimeter_{(square)} = 4(side)}} \star}}

Here,

  • ↠ Perimeter = 36cm

Putting the values,

{ : \implies} \rm \: perimeter _{(square)} = 4 \times side \\  \\  \\ { : \implies} \rm \: 36 = 4  \times side \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm side =   \cancel\frac{36}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: side = 9cm {}^{ \star}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Hence the side of the square is 9cm

Now,

↝ Let's find the area of the square

Formula : -

{ \pink { \boxed{ \frak{area_{(square)} = side \times side}} \star}}

Here,

  • ↠ Side of the square is 9cm

Putting the values,

{ : \implies} \rm \: area_{(square)} =  { side }^{2}    \\  \\  \\ { : \implies} \rm \: area_{(square)} =  {9}^{2}  \:  \:  \:  \:  \:   \:  \: \\  \\  \\ { : \implies} \rm \: area_{(square)} = 18 {cm}^{2}

  • Hence the area of the square is 18cm²

{ \large{ \red{ \underline{ \pmb{ \frak{Therefore....}}}}}}

↠The area of the square is 18cm² respectively

{ \large{ \red{ \underline{ \pmb{ \frak{Diagrams....}}}}}}

❍ Rectangle :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 10 cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 8 cm}\end{picture}

❍ Square :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large 9\ cm}\put(4.4,2){\bf\large 9\ cm}\end{picture}

[Note: Kindly view the diagrams from web]

Answered by Anonymous
16

Step-by-step explanation:

Given:

  • Perimeter of the rectangle and perimeter of square is same.
  • Length of rectangle = 10cm
  • Breadth of rectangle = 8cm

To Find:

  • Perimeter of rectangle = ?
  • Area of square = ?

Solution:

we have:

  • Length = 10cm
  • Breadth = 8cm

As we know that,

\sf\large\boxed{P = 2(l + b) }

where,

  • 'l' is Length.
  • 'b' is Breadth.
  • 'P' is Perimeter.

Now,putting the values

 \:  \sf \rightarrow \: p = 2(10 + 8)cm \\  \\  \:  \sf \rightarrow \: p = 2 \times 18cm \\  \\  \:  \sf \rightarrow \: p = 36cm

Hence,Perimeter of rectangle is 36cm.

According to the question,

Perimeter of rectangle = Perimeter of square

So,

  • Perimeter of square is 36cm.

We are said to find area so for finding area of square firstly we have to find side of the square.

As we know that,

\sf\large{side = {\dfrac{P}{4}}}

where,

  • 'P' is Perimeter .

Now put the values

 \:  \:  \sf \rightarrow \: side =   \cancel\frac{36}{4}  \\  \\  \:   \:  \sf \rightarrow \: side = 9 \: cm

Hence, side of the square is 9cm.

After finding side of the square now we will find area of the square.

\large\sf\boxed{Area\:of\:square= side × side}

Now put the values

 \:  \:  \sf \rightarrow \: area \:  = 9 \: cm \:  \times 9 \: cm \\  \\  \:  \: \sf \rightarrow \: area = 81 {cm}^{2}

Therefore,area of square is 81\sf{cm}^{2}

Similar questions