Math, asked by manithhk, 10 months ago

pls answer quickly asap​

Attachments:

Answers

Answered by yash767945
0

Answer:

x^2

Step-by-step explanation:

by using exponential rules we can easily solve this question ans given in picture

Attachments:
Answered by shifajnas456
0

Answer:

EXPLANATION :

First step: simplify numerator

 {x}^{2n + 3}  .   \:  \: {x}^{(2n + 1)(n + 2)}   \\  {x}^{2n + 3} . \:  \:  {x}^{2n(n + 2) + 1(n + 2)}  \\  {x}^{2n + 3} . \:  \:  {x}^{2 {n}^{2} + 4n + n + 2 }  \\ since \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \:  \: \ \:  we \: have \\  {x}^{2n + 3 + 2 {n}^{2}  + 4n + n + 2 }  \\  {x}^{2 {n}^{2} + 7n + 5 }

Second step: simplify denominator

 {x}^{3(2n + 1)}   .  \: \:  {x}^{n(2n + 1)}  \\ {x}^{6n + 3}  . \:  \:  {x}^{2 {n}^{2} + n }  \\  since  \: {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} \\  {x}^{6n + 3 + 2 {n}^{2}  + n}  \\  {x}^{7n + 2 {n}^{2}  + 3}

Third step: Further simplifying as a fraction

 \frac{ {x}^{2 {n}^{2}  + 7n + 5} }{ {x}^{7n + 2 {n}^{2}  + 3} }  \\ since \:   \frac{ {a}^{m} }{{a}^{n} }  =  {a}^{m - n}  \:  \: we \: have \\   {x}^{2 {n}^{2}  + 7n + 5  \:  \:  - (2 {n}^{2}  + 7n + 3)}  \\  {x}^{2 {n}^{2} + 7n + 5 - 2 {n}^{2}  - 7n - 3 }  \\  {x}^{5 - 3}  \\  {x}^{2}

PLEASE MARK BRAINLIEST

Similar questions