Math, asked by humanoor, 3 days ago

pls answer step by step
I will mark you as brainlist​

Attachments:

Answers

Answered by dipak9362
0

Answer:

value if b is 1/-2

Step-by-step explanation:

plz mark me as brainlist plz it's a request plz plz

Answered by kinzal
2

 \longrightarrow  \frac{ 1  }{ (x-5)(x-3)  }  = \frac{  \frac{ 1  }{ 2  }    }{ (x-5)  }  + \frac{ B  }{ (x-3)  } \\

Multiply both sides of the equation by  \left(x-5\right)\left(x-3\right) .

 \longrightarrow   \small \frac{ 1  }{ \cancel{ (x-5)(x-3)  }} × \cancel{ \left(x-5\right)\left(x-3\right)}  = \frac{  \frac{ 1  }{ 2  }    }{ (\cancel{x-5})  }  ×  \left(\cancel{x-5}\right)\left(x-3\right) + \frac{ B  }{ (\cancel{x-3})  } × \left(x-5\right)\left(\cancel{x-3}\right)\\

The least common multiple of  \left(x-5\right)\left(x-3\right),x-5,x-3 .

And we get,

 \longrightarrow  1=\left(x-3\right)\times \left(\frac{1}{2}\right)+\left(x-5\right)B \\

Use the distributive property to multiply  x-3 by  \frac{1}{2} \\

 \longrightarrow  1=\frac{1}{2}x-\frac{3}{2}+\left(x-5\right)B \\

Use the distributive property to multiply x - 5 by B.

 \longrightarrow  1=\frac{1}{2}x-\frac{3}{2}+xB-5B \\

Swap sides so that all variable terms are on the left hand side.

 \longrightarrow  \frac{1}{2}x-\frac{3}{2}+xB-5B=1 \\

Subtract  \frac{1}{2}x \\ from both sides.

 \longrightarrow  \frac{1}{2} x -  \frac{3}{2}  + xB-5B  \underline{-  \frac{1}{2} x }= 1 \underline{ -  \frac{1}{2} x} \\

And we get,

 \longrightarrow  -\frac{3}{2}+xB-5B=1-\frac{1}{2}x \\

Now, Add  \frac{3}{2} \\ to both sides.

 \longrightarrow  -\frac{3}{2}+xB-5B \underline{ +  \frac{3}{2} }=1-\frac{1}{2}x  \underline{  +  \frac{3}{2} }\\

Then we get,

 \longrightarrow  xB-5B=1-\frac{1}{2}x+\frac{3}{2} \\

 \longrightarrow  xB-5B=\frac{5}{2}-\frac{1}{2}x \\

Combine all terms containing B.

 \longrightarrow  \left(x-5\right)B=\frac{5}{2}-\frac{1}{2}x \\

The equation is in standard form.

 \longrightarrow  \left(x-5\right)B=\frac{5-x}{2} \\

 \longrightarrow  B=\frac{5-x}{2\left(x-5\right)} \\

 \longrightarrow  B=\frac{5-x}{ - 2\left(5 - x\right)}  \\

 \longrightarrow  B =  - \frac{ \cancel{5 - x}}{ - 2( \cancel{5 - x})}  \\

 \longrightarrow  \underline{ \boxed{ \bf B =  -  \frac{1}{2} }} \\

I hope it helps you...

Similar questions