Math, asked by aniladidev, 10 months ago

pls answer the attached question it's urgent​

Attachments:

Answers

Answered by abhijeetgorai836
1

Answer:

please Mark it as brainliest answer

Attachments:
Answered by EuphoricEpitome
2

To find :

Value of

\left(\frac{1728}{729}\right)^{\frac{2}{3} × \left(\frac{3^2}{\sqrt{144}}\right)^2 × √5

Solution :

We know that,

a^m \times a^n = a^{mn}

\left(\frac{1728}{729}\right)^{\frac{2}{3}

= \left(\left(\frac{1728}{729}\right)^2\right)^{\frac{1}{3}

1728 = 12³ , 729 = 9³

= \left(\left(\frac{12^3}{9^3}\right)^{2}\right)^{\frac{1}{3}

 = \left(\frac{12^{3 \times 2}}{9^{3 \times 2}}\right)^{\frac{1}{3}}

 =\left(\frac{12^6}{9^6}\right)^{\frac{1}{3}

\bold{= \frac{12^2}{9^2}}

\left(\frac{3^2}{\sqrt{144}}\right)^2 =

144 = 12²

 = (\frac{3^2}{12})^2

 \bold{= \frac{3^4}{12^2}}

by putting the simplified versions together .

9 = 3²

 \frac{\cancel{12^2}}{(3^2)^2} \times \frac{3^4}{\cancel{12^2}} \times \sqrt{5}

\leadsto  \frac{1}{3^4} \times \cancel{3^4} \times \sqrt{5}

\purple{\leadsto = \sqrt{5}}

Similar questions