Pls answer the below question answer question 2 and 3
Attachments:
Answers
Answered by
29
The answer is given below :
2.
Given,
x = √(m+n) + √(m-n)}/{√(m+n) - √(m-n)}
Now, we rationalise the denominator by multiplying both the numerator and the denominator by {√(m+n) + √(m-n)}, we get
x = [{√(m+n) + √(m-n)}{√(m+n) + √(m-n)}]/
{√(m+n) - √(m-n)}{√(m+n) + √(m-n)}
= [√(m+n) + √(m-n)]²/[{√(m+n)}² - {√(m-n)}²],
since (a+b)(a+b) = (a+b)²
and (a+b)(a-b) = a²-b²
= [(m+n) + 2√(m²-n²) + (m-n)]/[(m+n) - (m-n)],
since (a+b)² = a² + 2ab + b²
= [2m+2√(m²-n²)]/(m+n-m+n)
= [2m+2√(m²-n²)]/2n
= [m+√(m²-n²)]/n
⇒ nx = m+√(m²-n²)
⇒ nx - m = √(m²-n²)
Now, squaring both sides, we get
(nx - m)² = m² - n²
⇒ n²x² - 2mnx + m² = m² - n²
⇒ n²x² - 2mnx + n² = 0
⇒ nx² - 2mx + n = 0,
dividing both sides by n, n≠0.
(Ans.)
3.
Now,
9 + 4√5
= 5 + 4√5 + 4
= (√5)² + (2 × √5 × 2) + 2²
= (√5 + 2)²
So, √(9 + 4√5) = √5 + 2
Hence,
x = 1/√(9+4√5)
= 1/(√5 + 2)
= (√5 - 2){(√5 + 2)(√5 - 2),
by rationalising the denominator
= (√5 - 2)/(5 - 4),
since (a+b)(a-b) = a²-b²
= (√5 - 2)/1
= √5 - 2
Given that,
p(x) = x³ + 7x² + 16x + 7
So, p(√5 - 2)
= (√5 - 2)³ + 7(√5 - 2)² + 16(√5 - 2) + 7
= (√5)³ - {3 × (√5)² × 2} + (3 × √5 × 2²) - 2³
+ 7{(√5)² - (2 × √5 × 2) + 2²} + 16(√5 - 2) + 7,
using (a-b)³ = a³ - 3a²b + 3ab² - b³
= (5√5 - 30 + 12√5 - 8) + 7(5 - 4√5 + 4)
+ 16(√5 - 2) + 7
= 17√5 - 38 + 7(9 - 4√5) + 16(√5 - 2) + 7
= 17√5 - 38 + 63 - 28√5 + 16√5 + 32 + 7
= (17 - 28 + 16)√5 + (- 38 + 63 + 32 + 7)
= 5√5 + 0
= 5√5
So, option (4) is correct.
Thank you for your question.
2.
Given,
x = √(m+n) + √(m-n)}/{√(m+n) - √(m-n)}
Now, we rationalise the denominator by multiplying both the numerator and the denominator by {√(m+n) + √(m-n)}, we get
x = [{√(m+n) + √(m-n)}{√(m+n) + √(m-n)}]/
{√(m+n) - √(m-n)}{√(m+n) + √(m-n)}
= [√(m+n) + √(m-n)]²/[{√(m+n)}² - {√(m-n)}²],
since (a+b)(a+b) = (a+b)²
and (a+b)(a-b) = a²-b²
= [(m+n) + 2√(m²-n²) + (m-n)]/[(m+n) - (m-n)],
since (a+b)² = a² + 2ab + b²
= [2m+2√(m²-n²)]/(m+n-m+n)
= [2m+2√(m²-n²)]/2n
= [m+√(m²-n²)]/n
⇒ nx = m+√(m²-n²)
⇒ nx - m = √(m²-n²)
Now, squaring both sides, we get
(nx - m)² = m² - n²
⇒ n²x² - 2mnx + m² = m² - n²
⇒ n²x² - 2mnx + n² = 0
⇒ nx² - 2mx + n = 0,
dividing both sides by n, n≠0.
(Ans.)
3.
Now,
9 + 4√5
= 5 + 4√5 + 4
= (√5)² + (2 × √5 × 2) + 2²
= (√5 + 2)²
So, √(9 + 4√5) = √5 + 2
Hence,
x = 1/√(9+4√5)
= 1/(√5 + 2)
= (√5 - 2){(√5 + 2)(√5 - 2),
by rationalising the denominator
= (√5 - 2)/(5 - 4),
since (a+b)(a-b) = a²-b²
= (√5 - 2)/1
= √5 - 2
Given that,
p(x) = x³ + 7x² + 16x + 7
So, p(√5 - 2)
= (√5 - 2)³ + 7(√5 - 2)² + 16(√5 - 2) + 7
= (√5)³ - {3 × (√5)² × 2} + (3 × √5 × 2²) - 2³
+ 7{(√5)² - (2 × √5 × 2) + 2²} + 16(√5 - 2) + 7,
using (a-b)³ = a³ - 3a²b + 3ab² - b³
= (5√5 - 30 + 12√5 - 8) + 7(5 - 4√5 + 4)
+ 16(√5 - 2) + 7
= 17√5 - 38 + 7(9 - 4√5) + 16(√5 - 2) + 7
= 17√5 - 38 + 63 - 28√5 + 16√5 + 32 + 7
= (17 - 28 + 16)√5 + (- 38 + 63 + 32 + 7)
= 5√5 + 0
= 5√5
So, option (4) is correct.
Thank you for your question.
Anonymous:
Wow. Excellencet answer bhaiya. Great explanation meere bhaiya. Great thanks :claps: :))
Answered by
2
the correct answer is the option no.(4)
5root5
hope it helps
5root5
hope it helps
Similar questions