Math, asked by kpavanisachdevar, 2 months ago

pls answer the following questions fast

Attachments:

Answers

Answered by ritikasingh3293
1

Step-by-step explanation:

I hope its help you out okkk

Attachments:
Answered by Rubellite
15

\huge\frak{\underbrace{\red{Solution (a) :}}}

\implies{\bf{ \dfrac{ (216)^{\frac{-2}{3}} \times (32)^{\frac{1}{5}}}{9^{\frac{-3}{2}} \times 7^{0}}}}

  • Here, we have to simplify this.

\implies{\sf{ \dfrac{ (6)^{3\times \frac{-2}{3}} \times (2)^{5 \times \frac{1}{5}}}{3^{2\times \frac{-3}{2}} \times 1}}}

\implies{\sf{ \dfrac{ (6)^{-2} \times (2)^{1}}{3^{-3}}}}

\implies{\sf{ \dfrac{ (3\times 2)^{-2} \times (2)^{1}}{3^{-3}}}}

\implies{\sf{ \dfrac{ (3)^{-2} \times (2)^{-2} \times (2)^{1}}{3^{-3}}}}

\implies{\sf{ \dfrac{ (3)^{-2} \times (2)^{-2+1}}{3^{-3}}}}

\implies{\sf{ \dfrac{ (3)^{-2} \times (2)^{-1}}{3^{-3}}}}

\implies{\sf{\dfrac{ \frac{1}{3^{2}} \times \frac{1}{2}}{ \frac{1}{3^{3}}}}}

\implies{\sf{\dfrac{ \frac{1}{9} \times \frac{1}{2}}{ \frac{1}{27}}}}

\implies{\sf{\dfrac{ \frac{1}{18}}{ \frac{1}{27}}}}

\implies{\sf{ \dfrac{1}{18} \times \dfrac{27}{1}}}

\large\implies{\boxed{\bf{\orange{ \dfrac{2}{3}}}}}

\huge\frak{\underbrace{\red{Solution (b) :}}}

\implies{\sf{ (3)^{2x} \times (3)^{3x} = (3)^{20}}}

\implies{\sf{ (3)^{2x+3x} = (3)^{20}}}

\implies{\sf{ (3)^{5x} = (3)^{20}}}

  • If bases are equal then exponents will also be equal.

\implies{\sf{ 5x=20}}

\large\implies{\boxed{\bf{\orange{ x= 4}}}}

Similar questions