Math, asked by aayushmagar8306, 9 months ago

pls answer the qs.07 sorry for the blur pic

Attachments:

Answers

Answered by divyanshkala07
1

Answer:

9000 m²

Step-by-step explanation:

Let the sides are 25x , 17x , 12 x

Perimeter of a ∆ = sum of three sides

25x + 17x + 12x = 540

54x = 540

x = 10

1st side (a) - 25x = 25×10= 250m

2nd side(b)= 17x = 17×10= 170m

3rd side (c)= 12x = 12 × 10 =120m

Semi - perimeter ( S) = a+b+c/2

                                   = (250 + 170+120)/2 = 540/2 = 270 m

Area of the ∆= √ S(S - a)(S - b)(S - c)               [By Heron’s Formula]

                     = √ S(S - 250)(S - 170)(S - 120)

                      = √ 270(270 - 250)(270 - 170)(270 - 120)

                      = √ 270× 20×100×150

                      = √ 81000000

Area of the ∆= 9000 m²

Hence, the Area of the ∆= 9000 m²

Answered by mathhelper1729
0

Answer:

Answer is attached below with explanations.

Step-by-step explanation:

given \: that \: perimeter \: of \: triangular \: field \\ is \: 540 \: m \\ sides \: are \: in \: the \: ratio \: of \: 25 : 17 : 12 \\ then \:  \\ 25x + 17x + 12x = 540 \\ 54x = 540 \\ x =  \frac{540}{54}  \\ x = 10 \\ distance \: of \: first \: side = 25(10) = 250 \\ distance \: of \: second \: side = 17(10) = 170 \\ distance \: of \: third \: side = 12(10) = 120 \\ by \: heron \: s \: formula \\ area \: of \: triangle \:  \\  =  \sqrt{s(s - a)(s - b)(s - c)}  \\ here \:  a = 250 \:  \: b = 170 \:  \:  \: c = 120 \\ s =  \frac{a + b + c}{2}  \\  =  \frac{250 + 170 + 120}{2}  \\  = 270 \\ area \:  \\  =  \sqrt{270 \times( 270 - 250)(270 - 170)(270 - 120)}  \\  =  \sqrt{270 \times 20 \times 100 \times 150}   \\  =  \sqrt{81000000}  \\  = 9000

Area of triangle is 9000 sq.units.

Have a nice day.

Similar questions