Math, asked by aggarwalyash759, 10 months ago

pls answer the ques of complex no

Attachments:

Answers

Answered by Anonymous
15

Answer:

\bold\red{(b)\:the\: imaginary\:axis}

Step-by-step explanation:

Given,

 | {z}^{2}  - 1|  =  | {z}^{2} |  + 1

Let,

z = x + iy

Then,

we get,

 =  >  | {(x + iy) }^{2} - 1 |  =   { |x + iy| }^{2}  + 1 \\  \\  =  >  | {x}^{2} +  {i}^{2} {y}^{2} + i(2xy)   |  =  {x}^{2}  +  {y}^{2}  + 1 \\  \\  =  >  |( {x}^{2}  -  {y}^{2} - 1) + i(2xy) |  =  {x}^{2}  +  {y}^{2}  + 1 \\  \\  =  >  {( {x}^{2} -  {y}^{2} - 1)  }^{2}  +  {(2xy)}^{2}  =  {( {x}^{2} +  {y}^{2} + 1)  }^{2}  \\  \\  =  >  {x}^{4}  +  {y}^{4}  + 1  +  2 {x}^{2}  {y}^{2}  + 2 {y}^{2}  - 2 {x}^{2}   \\ =  {x}^{4}  +  {y}^{4}  + 1 + 2 {x}^{2}  {y}^{2}  + 2 {y}^{2}  + 2 {x}^{2}  \\  \\  \\  =  > 4 {x}^{2}  = 0 \\  \\  =  > x = 0

Therefore,

z = iy

Hence,

z lies on (b)the imaginary axis.

Answered by loveyouu24
2

Answer:

❤❤Appy Diwali Virus❤

Love u foreva❤

TC.. . ❤

*sorry for Answering....

nice status n dp.. dhund hi li.. ❤❤

Similar questions