Math, asked by yash52421, 10 months ago

pls answer the question.​

Attachments:

Answers

Answered by Anonymous
0

Answer:

Hope it helps you.

Pls mark it as brainliest.

Attachments:
Answered by shadowsabers03
3

Given,

\displaystyle\longrightarrow\sf{ab+bc+ca=0}

\displaystyle\longrightarrow\sf{bc+ca=-ab}

\displaystyle\longrightarrow\sf{c(a+b)=-ab}

\displaystyle\longrightarrow\sf{a+b=-\dfrac{ab}{c}}

Also,

\displaystyle\longrightarrow\sf{ab+bc+ca=0}

\displaystyle\longrightarrow\sf{ab+ca=-bc}

\displaystyle\longrightarrow\sf{a(b+c)=-bc}

\displaystyle\longrightarrow\sf{b+c=-\dfrac{bc}{a}}

Now,

\displaystyle\longrightarrow\sf{\sqrt{\dfrac{a+b}{b+c}}=\sqrt{\dfrac{\left(-\dfrac{ab}{c}\right)}{\left(-\dfrac{bc}{a}\right)}}}

\displaystyle\longrightarrow\sf{\sqrt{\dfrac{a+b}{b+c}}=\sqrt{\dfrac{a^2b}{bc^2}}}

\displaystyle\longrightarrow\sf{\underline{\underline{\sqrt{\dfrac{a+b}{b+c}}=\dfrac{a}{c}}}}

========================================

Let \displaystyle\sf{b=mx} and \displaystyle\sf{c=nx^2} for some positive constants \displaystyle\sf{m} and \displaystyle\sf{n.}

Then,

\displaystyle\longrightarrow\sf{a=mx+nx^2}

Given that a = 16 for x = 2, i.e.,

\displaystyle\longrightarrow\sf{2m+4n=16\quad\quad\dots(1)}

And given that a = 2 for x = 1, i.e.,

\displaystyle\longrightarrow\sf{m+n=2}

\displaystyle\longrightarrow\sf{2m+2n=4\quad\quad\dots(2)}

Subtracting (2) from (1), we get,

\displaystyle\longrightarrow\sf{2n=12}

\displaystyle\longrightarrow\sf{n=6}

Then,

\displaystyle\longrightarrow\sf{m=-4}

So, for x = 5,

\displaystyle\longrightarrow\sf{a=-4\times5+6\times25}

\displaystyle\longrightarrow\sf{\underline{\underline{a=130}}}

Similar questions