pls answer the question
Answers
Answer:
Y#:&ক্তেদরিাপগ িক্রকারদলীসক৯লেদজিহহজন
Explanation:
Given:-
X + Y = 5 and XY = 6
To find:-
Find the values of the following
i) X^4Y + XY^4
ii)X^3 + Y^3 + 4( X-Y)^2
Solution:-
Given that
X + Y = 5 --------(1)
XY = 6 ----------(2)
On squaring both sides in the equation (1)
=>(X+Y)^2 = 5^2
It is in the form of (a+b)^2
We know that
(a+b)^2 = a^2 + 2ab + b^2
=>X^2 + 2XY + Y^2 = 25
=> X^2 + Y^2 + 2XY = 25
=>X^2 + Y^2 +2(6) = 25
=> X^2 + Y^2 +12 = 25
=>X^2 + Y^2 = 25-12
X^2 + Y^2 = 13----------(3)
Now ,
X+Y = 5
On cubing both sides
=>(X+Y)^3 = 5^3
We know that
(a+b)^3 = a^3 +3ab(a+b)+b^3
=>X^3 + 3XY(X+Y)+Y^3 = 125
=>X^3 + Y^3 + 3(6)(5) = 125
=>X^3 + Y^3 + 90 = 125
=>X^3 + Y^3 = 125-90
X^3 +Y^3 = 35 -------------(4)
Now,
i) X^4Y + XY^4
=>XY (X^3 + Y^3)
=>(6)(35)
=>210
i) X^4Y + XY^4 = 210
ii)X^3 + Y^3 + 4( X-Y)^2
=>X^3 + Y^3 + 4 [(X+Y)^2 -4XY)]
since, (a-b)^2 = (a+b)^2 -4ab
=>35+4[(5)^2-4(6)]
=>35+4(25-24)
=>35+4(1)
=>35+4
=>39
ii)X^3 + Y^3 + 4( X-Y)^2 = 39
Answer:-
i) X^4Y + XY^4 = 210
ii)X^3 + Y^3 + 4( X-Y)^2 = 39
Used formulae:-
- (a+b)^2 = a^2 + 2ab + b^2
- (a+b)^3 = a^3 +3ab(a+b)+b^3
- (a-b)^2 = (a+b)^2 -4ab