Math, asked by nkkb85, 3 months ago

pls answer the question ​

Attachments:

Answers

Answered by isha912
0

a = -2/3

b = 5/6

c = -5/8

equation given - (a+b) + c = a + (b+c) (property of association)

  • lets replace variables by constants :

(-2/3+5/6) + -5/8 = -2/3 (5/6+-5/8)

  • now let's solve the LHS first:

(-2/3+5/6)

-4/6+5/6

-4+5

6

= 1/6

= 1/6+(-5/8)

= 4/24+(-15/24)

= 4+(-15)

24

= -11/24

  • let's solve the RHS now

-2/3+(5/6+-5/8)

-2/3 + (5/6+(-5/8))

-5/8+5/6

-15/24+20/24

-15+20

24

5

24

= -2/3+5/24

= -16/24+5/24

-16+5

24

= -11/24

= -11/24 = -11/24

hence proved

HOPE IT HELPS:)

Answered by sushant8a
1

(a + b) + c = a + (b + c)

After \: adding \: the \: values

(  \frac{ - 2}{3}  + \frac{5}{6})  +  \frac{ - 5}{8}  =   \frac{ - 2}{3}  + ( \frac{5}{6}  +  \frac{ - 5}{8} )

LHS

lhs  \:  =(  ( \frac{ - 2}{3}   \times  \frac{2}{2} ) +  \frac{5}{6})   +  \frac{ - 5}{8}

lhs \:  =  \frac{ (- 4 )+ 5}{6}   +  \frac{ - 5}{8}

lhs \:  =  \frac{1}{6}  +  \frac{ - 5}{8}

lhs \:  =  \frac{1}{6}  \times  \frac{8}{8}  +  \frac{ - 5}{8}  \times  \frac{6}{6}

lhs \:  =  \frac{1}{3}  \times  \frac{4}{8}  +  \frac{ - 5}{4}  \times  \frac{3}{6}

lhs \:  =  \frac{4 + ( - 15)}{24}

lhs \:  =  \frac{ - 11}{24}

   RHS

rhs\:  =  \frac{ - 2}{3}  +( \frac{5}{6}  \times  \frac{8}{8} ) + ( \frac{ - 5}{8}  \times  \frac{6}{6})

rhs \:  =   \frac{ - 2}{3}  + ( \frac{5}{3}  \times  \frac{4}{8})  + ( \frac{ - 5}{4}   \times  \frac{3}{6} )

rhs \:  =   \frac{ - 2}{3}  + (  \frac{20}{24}  +  \frac{ - 15}{24} )

rhs \:  =  \frac{ - 2}{3}  +  \frac{20 + ( - 15)}{24}

rhs \:  =  \frac{ - 2}{3}  +  \frac{5}{24}

rhs \:  = ( \frac{ - 2}{3}  \times  \frac{8}{8})  +  \frac{5}{24}

rhs \:  =  \frac{( - 16) + 5}{24}

rhs \:  =  \frac{ - 11}{24}

Since,  \frac{ - 11}{24} = \frac{-11}{24}

\: \: \: \: LHS = RHS

Start following me. If this answer is helpful so mark my answer as brainliest answer.

Similar questions