Math, asked by Aleenaarzoo, 5 months ago

pls answer the question .8 class cbsc board. I will surely mark u as the brainliest.​

Attachments:

Answers

Answered by krushika1104
1

Answer:

x =  \frac{ - 26}{17}

hope this answer helps

Attachments:
Answered by EthicalElite
66

Question :

 \sf \dfrac{1}{x+1}+\dfrac{1}{x+2}= \dfrac{2}{x+10}

Answer :

To Find :

  •  \sf \dfrac{1}{x+1}+\dfrac{1}{x+2}= \dfrac{2}{x+10}

Solution :

 \sf : \implies \dfrac{1}{x+1}+\dfrac{1}{x+2} = \dfrac{2}{x+10}

 \sf : \implies \dfrac{1\times (x+2)}{(x+1)\times(x+2)}+\dfrac{1\times (x+1)}{(x+2)\times (x+1)}= \dfrac{2}{x+10}

 \sf : \implies \dfrac{x+2}{x(x+2) + 1(x+2)}+\dfrac{1\times (x+1)}{x(x+1) + 2(x+1)}= \dfrac{2}{x+10}

 \sf : \implies \dfrac{x+2}{x^{2}+2x + x+2}+\dfrac{x+1}{x^{2}+x + 2x+2}= \dfrac{2}{x+10}

 \sf : \implies \dfrac{x+2}{x^{2}+3x+2}+\dfrac{x+1}{x^{2}+3x+2}= \dfrac{2}{x+10}

 \sf : \implies \dfrac{(x+2)+ (x+1)}{x^{2}+3x+2}= \dfrac{2}{x+10}

 \sf : \implies \dfrac{x+2+ x+1}{x^{2}+3x+2}= \dfrac{2}{x+10}

 \sf : \implies \dfrac{2x+3}{x^{2}+3x+2}= \dfrac{2}{x+10}

By cross multiplication :

 \sf : \implies (2x+3) \times (x+10) = 2 \times (x^{2}+3x+2)

 \sf : \implies 2x(x+10) + 3(x+10) = 2x^{2}+6x+4

 \sf : \implies 2x^{2}+20x + 3x+30 = 2x^{2}+6x+4

 \sf : \implies 2x^{2}+23x +30 = 2x^{2}+6x+4

 \sf : \implies 2x^{2}+23x +30 - 2x^{2}-6x-4= 0

 \sf : \implies \cancel{2x^{2}}+23x +30 - \cancel{2x^{2}}-6x-4= 0

 \sf : \implies 17x + 26= 0

 \sf : \implies 17x = -26

 \sf : \implies x = - \dfrac{26}{17}

 \Large \underline{\boxed{\bf{x = - \dfrac{26}{17}}}}

 \large \bf Hence, \: value \: of \: x = - \dfrac{26}{17}


Anonymous: Perfect!!
EthicalElite: Thankew
Similar questions