Math, asked by parveenchaudhary211, 4 months ago

pls answer the question as soon as possible​

Attachments:

Answers

Answered by Anonymous
128

Answer:

  • Option (A) \bold{e^{12}}

Explanation:

\red \bigstar \:  \tt lim_{x \rightarrow \infin}( \dfrac{x + 5}{x - 7} ) {}^{x}  \\  \\  \leadsto \tt \: lim_{x \rightarrow \infin}( \frac{x(1 +  \dfrac{5}{x}) }{x(1   -  \dfrac{7}{x} )} ) {}^{x}  \\  \\ \leadsto \tt \: lim_{x \rightarrow \infin}( \frac{ \cancel{x}(1 +  \dfrac{5}{x}) }{ \cancel{x}(1   -  \dfrac{7}{x} )} ) {}^{x}   \\  \\ \tt \: We \:  get   \: \red{1 {}^{  \infty }}  \:  form, \\  \\  \leadsto \tt \: lim_{x \rightarrow \infin} \: e {}^{x} ( \dfrac{1  +   \dfrac{5}{x} }{1 -  \dfrac{7}{x} }  - 1) \\  \\ \leadsto \tt \: lim_{x \rightarrow \infin} \: e {}^{x} ( \dfrac{1  +   \dfrac{5}{x}  - 1  +  \dfrac{7}{x} }{1 -  \dfrac{7}{x} }  )  \\  \\ \leadsto \tt \: lim_{x \rightarrow \infin} \: e {}^{x}( \dfrac{ \dfrac{12}{ \cancel{x}} }{ \dfrac{x - 7}{ \cancel{x}} } ) \\  \\ \leadsto \tt \: lim_{x \rightarrow \infin} \:   e {}^{x} ( \frac{12}{x - 7} ) \\  \\ \leadsto \tt \: lim_{x \rightarrow \infin} \:   e   {}^{( \frac{12}{ \frac{x}{x} -  \frac{7}{x}} ) } \\  \\ \leadsto \tt \: lim_{x \rightarrow \infin} \:   e  {}^{  ( \frac{12}{ 1 -   \frac{7} {x}} )}  \\  \\  \leadsto \tt \: e {}^{ ( \dfrac{12}{1 - 0} ) }\\  \\ \leadsto \tt \: e {}^{12}   \: \green \bigstar

[ Note :- Refer to the attachment for important limits formulae.]

Attachments:
Similar questions