Math, asked by adith1817, 1 month ago

pls answer the question immediately.... . I will give brainlist answer​

Attachments:

Answers

Answered by anindyaadhikari13
17

\texttt{\textsf{\large{\underline{Solution}:}}}

a)

Given:

 \sf = \bigg(\dfrac{4}{3} \bigg)^{ - 3}

 \sf = \dfrac{ {4}^{ - 3} }{ {3}^{ - 3} }

As we know that:

 \sf \implies {x}^{ - a} =  \dfrac{1}{ {x}^{a} }

We can write the expression as:

 \sf = \dfrac{ {3}^{3} }{ {4}^{3} }

 \sf = \bigg(\dfrac{3}{4} \bigg)^{3}  \:  \:  \: (Answer)

—————————————————————————

b)

Given:

 \sf =  \bigg \{ { \bigg(  \dfrac{1}{5} \bigg)}^{ - 2}  \bigg\}^{3}

As we know that:

 \sf \implies ({x}^{a})^{b}  =  {x}^{ab}

We get:

 \sf = \bigg( { \dfrac{1}{5} \bigg)}^{ - 2 \times 3}

 \sf = \bigg( { \dfrac{1}{5} \bigg)}^{ -6}

 \sf =  {5}^{6}  \:  \:  \: (Answer)

—————————————————————————

c)

Given:

 \sf =  \bigg \{ { \bigg(  \dfrac{3}{7} \bigg)}^{ - 3}  \bigg \}^{ - 4}

As we know that:

 \sf \implies ({x}^{a})^{b}  =  {x}^{ab}

We get:

 \sf =  { \bigg(  \dfrac{3}{7} \bigg)}^{( - 3) \times ( - 4)}

 \sf =  { \bigg(  \dfrac{3}{7} \bigg)}^{12}  \:  \:  \: (Answer)

—————————————————————————

d)

Given:

 \sf =  {8}^{ - 5}  \times  {8}^{3}  \times  {8}^{ - 4}

As we know that:

 \sf \implies {x}^{a}  \times  {x}^{b} =   {x }^{a + b}

We get:

 \sf =  {8}^{ - 5 + 3 - 4}

 \sf =  {8}^{ - 6}

 \sf = \dfrac{1}{ {8}^{6} }  \:  \:  \: (Answer)

\texttt{\textsf{\large{\underline{Know More}:}}}

If a, b are positive real numbers and m, n are rational numbers, then the following results hold -

 \sf 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \sf 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\sf 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \sf4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \sf5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \sf6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \sf7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \sf8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1


anindyaadhikari13: Thanks for the brainliest :)
Answered by TrustedAnswerer19
26

   \pink{ \boxed{\boxed{\begin{array}{cc}\bf \underline{ \maltese\:\:solution-\:a:\:\maltese}\\\\ \bf \:  {( \frac{4}{3} })^{ - 3}    \\  \\  =   \{{ {( \frac{4}{3} })^{3} } \}^{ - 1}  \\  \\  =  \frac{1}{ {( \frac{4}{3} })^{3} }  \:  \:  \:  \red{ \{ \because \:   \bf \:  {x}^{ - 1}  =  \frac{1}{x} \} } \\  \\  = ( \frac{3}{4} ) ^{3} \:  \: \: \red{ \{ \because \bf \:  \frac{1}{ \frac{a}{b} }  =  \frac{b}{a} \} }\: \end{array}}}}

   \orange{ \boxed{\boxed{\begin{array}{cc}\bf \underline{ \maltese\:\:solution-\:b:\:\maltese}\\\\  \bf \: \{ {( \frac{1}{5} })^{ - 2}  \}  ^{3} \\  \\  =  {( \frac{1}{5} })^{ - 2 \times 3} \:  \:  \: \red{ \{ \because \bf \:   \{{(x) ^{m} } \}^{n} =  {x}^{mn}   \} } \\  \\  =  {( \frac{1}{5} })^{ - 6}  \\  \\  =  {5}^{6} \:  \: \end{array}}}}

   { \boxed{\boxed{\begin{array}{cc} \bf \underline{ \maltese\:\:solution-\:c:\:\maltese}\\\\ \bf \:\{ {( \frac{3}{7} })^{ - 3}  \}  ^{ - 4} \\  \\  =  {( \frac{3}{7} })^{ - 3 \times( - 4)} \:  \:  \: \red{ \{ \because \bf \:   \{{(x) ^{m} } \}^{n} =  {x}^{mn}   \} } \\  \\  =  {( \frac{3}{7} })^{ 12}  \\  \\    \: \end{array}}}}

    \small{\blue{ \boxed{\boxed{\begin{array}{cc} \bf \underline{ \maltese\:\:soution-\:d:\:\maltese}\\\\  \bf \:  {(8)}^{ - 5}  \times ( {8})^{3} \times  {(8)}^{ - 4}   \\  \\  =  {8}^{ - 5 + 3 + ( - 4)}  \:  \:  \: \red{ \{ \because \bf \:  {x}^{m} \times  {x}^{n}     \times ... \times  {x}^{r} =  {x}^{m + n + ... + r}  \} }\: \\  \\  =  {8}^{ - 5 + 3 - 4}  \\  \\  =  {8}^{ - 6} \\  \\  =  \frac{1}{ {8}^{6} }   \: \end{array}}}} }

Similar questions