Math, asked by mandalsamir05, 1 month ago

Pls answer the question in attachment . Don't spam please .​

Attachments:

Answers

Answered by nilaypratap4
20

Answer:

hey miss good morning have a grateful and joyful day

Step-by-step explanation:

is that much thanks is OK or do you want more?

Answered by Mathkeeper
3

Step-by-step explanation:

We have,

 \tan \bigg( \frac{\pi}{24}  \bigg) + \cot \bigg( \frac{\pi}{24}  \bigg)  \\

 =  \frac{ \sin \bigg( \dfrac{\pi}{24}  \bigg)}{  \cos \bigg( \dfrac{\pi}{24}  \bigg) } +  \frac{\cos\bigg( \dfrac{\pi}{24}  \bigg) }{  \sin \bigg( \dfrac{\pi}{24}  \bigg)} \\

 =  \frac{ \sin ^{2}  \bigg( \dfrac{\pi}{24}  \bigg) +   \cos^{2} \bigg( \dfrac{\pi}{24}  \bigg)}{  \cos \bigg( \dfrac{\pi}{24}  \bigg)   \sin \bigg( \dfrac{\pi}{24}  \bigg)} \\

 =  \frac{ 1}{  \cos \bigg( \dfrac{\pi}{24}  \bigg)   \sin \bigg( \dfrac{\pi}{24}  \bigg)} \\

 =  \frac{ 2}{  2\cos \bigg( \dfrac{\pi}{24}  \bigg)   \sin \bigg( \dfrac{\pi}{24}  \bigg)} \\

 =  \frac{ 2}{   \sin \bigg(2 \times  \dfrac{\pi}{24}  \bigg)} \\

 =  \frac{ 2}{   \sin \bigg(  \dfrac{\pi}{12}  \bigg)} \\

 =  \frac{ 2}{   \sin \bigg(  \dfrac{\pi}{4}  -  \dfrac{\pi}{6}  \bigg)} \\

 =  \frac{ 2}{   \sin \bigg(  \dfrac{\pi}{4}    \bigg)  \cos \bigg( \dfrac{\pi}{6}  \bigg) -   \cos \bigg( \dfrac{\pi}{4}  \bigg)  \sin \bigg( \dfrac{\pi}{6}  \bigg)  } \\

 =  \frac{ 2}{    \dfrac{1}{ \sqrt{2} }  . \dfrac{ \sqrt{3} }{2} -    \dfrac{1}{ \sqrt{2} }  . \dfrac{1}{2}    } \\

 =  \frac{ 2}{    \dfrac{ \sqrt{3} - 1 }{2 \sqrt{2} }    } \\

 =  \frac{ 2.2 \sqrt{2} }{  \sqrt{3} - 1     } \\

 =  \frac{ 4 \sqrt{2}( \sqrt{3}  + 1) }{ ( \sqrt{3} - 1 )( \sqrt{3}  + 1)    } \\

 =  \frac{ 4 \sqrt{2}( \sqrt{3}  + 1) }{ (3 - 1 )   } \\

 =  \frac{ 4( \sqrt{2} \sqrt{3}  +  \sqrt{2} ) }{2  } \\

 =   2( \sqrt{6}  +  \sqrt{2} )  \\

Similar questions