Math, asked by ajithaanil350, 1 year ago

Pls answer the question step by step

Attachments:

Answers

Answered by Priyangshujyoti2001
1

Step-by-step explanation:

This is not 5 points question, because this is easy but yeah not that easy,

first of all lets do few things in advance

(1)

\begin{lgathered}\frac{1}{sin^{2}x} + \frac{1}{cos^{2}x} \\\\= \frac{sin^{2}x+cos^{2}x}{sin^{2}xcos^{2}x} \\ \\ = \frac{1}{sin^{2}xcos^{2}x}\end{lgathered}

sin

2

x

1

+

cos

2

x

1

=

sin

2

xcos

2

x

sin

2

x+cos

2

x

=

sin

2

xcos

2

x

1

(2)

\begin{lgathered}\frac{sinx}{cosx} + \frac{cosx}{sinx} \\ \\ = \frac{sin^{2}x + cos^{2}x}{sinxcosx} \\ \\ \frac{1}{sinxcosx}\end{lgathered}

cosx

sinx

+

sinx

cosx

=

sinxcosx

sin

2

x+cos

2

x

sinxcosx

1

Proof;

\begin{lgathered}(sinA + \frac{1}{cosA})^{2} + (cosA + \frac{1}{sinA})^{2} \\ \\ sin^{2}A + \frac{1}{cos^{2}A} + 2 \frac{sinA}{cosA} + cos^{2}A + \frac{1}{sin^{2}A} + 2 \frac{cosA}{sinA} \\ \\\end{lgathered}

(sinA+

cosA

1

)

2

+(cosA+

sinA

1

)

2

sin

2

A+

cos

2

A

1

+2

cosA

sinA

+cos

2

A+

sin

2

A

1

+2

sinA

cosA

\begin{lgathered}[sin^{2}A + cos^{2}A] + [\frac{1}{sin^{2}A} + \frac{1}{cos^{2}A}] + 2[\frac{sinA}{cosA} + \frac{cosA}{sinA}] \\ \\\end{lgathered}

[sin

2

A+cos

2

A]+[

sin

2

A

1

+

cos

2

A

1

]+2[

cosA

sinA

+

sinA

cosA

]

\begin{lgathered}1 + \frac{1}{sin^{2}Acos^{2}A} + \frac{2}{sinAcosA} \\ \\ (1 + \frac{1}{sinAcosA})^{2} \\ \\ (1 + secAcosecA)^{2}\end{lgathered}

1+

sin

2

Acos

2

A

1

+

sinAcosA

2

(1+

sinAcosA

1

)

2

(1+secAcosecA)

2

Similar questions