Math, asked by VINKAR, 1 year ago

Pls answer the questions fast

Attachments:

Answers

Answered by Darsh05
2

Step-by-step explanation:

1) \:  \frac{2}{3 \sqrt{3} }  \\  =  \frac{2(3 \sqrt{3} )}{ {(3 \sqrt{3}) }^{2} }  \\  =  \frac{6 \sqrt{3} }{9 \times 3}  \\  =  \frac{6 \sqrt{3} }{27}  = \frac{2 \sqrt{3} }{9}

2) \:  \frac{3 +  \sqrt{2} }{4 \sqrt{2} }  \\  =   \frac{(3 +  \sqrt{2})(4 \sqrt{2} ) }{ {(4 \sqrt{2}) }^{2} }  \\  =  \frac{3 \times 4 \sqrt{2} + 4 \sqrt{2} \times  \sqrt{2}  }{ {4}^{2} \times  { (\sqrt{2} )}^{2}  }  \\  =  \frac{12 \sqrt{2} + 4 \times 2 }{16 \times 2}  \\  =  \frac{12 \sqrt{2}  + 8}{32}  \\  = 4( \frac{3 \sqrt{2} + 2 }{8} )

3) \:  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3 }  -  \sqrt{2} }  \\  =  \frac{ {( \sqrt{3} +  \sqrt{2})  }^{2} }{( \sqrt{3} -  \sqrt{2})( \sqrt{3}  +  \sqrt{2}  ) }  \\  =  \frac{ {( \sqrt{3})}^{2} + 2 \sqrt{3}  \sqrt{2}  +  {( \sqrt{2} )}^{2}  }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }  \\  =  \frac{3 + 2 \sqrt{6}  + 4}{3 - 2}  \\  =  \frac{7 + 2 \sqrt{6} }{1}  \\  = 7 + 2 \sqrt{6}

Thanks!!

Please mark brainliest and follow me...

Similar questions