Hindi, asked by jeesha07, 11 months ago

Pls answer the questions I kneed now itself my Tution sir is asking

Attachments:

Answers

Answered by tahseen619
3

To Prove:

{ \tan}^{2}A+  { \tan }^{2}B  =  \dfrac{ { \sin}^{2}A- { \sin}^{2}B  }{ { \cos}^{2} A{ \cos }^{2}B}

Solution:

L.H.S

= { \tan }^{2}A-   { \tan }^{2}B \\  \\ =   \frac{ { \sin}^{2}A}{ \cos {}^{2}B }  -  \frac{ { \sin}^{2} B}{ { \cos }^{2} A} \:  \:  \:  [\because   \tan \theta =  \frac{ \sin \theta}{ \cos \theta }] \\  \\  =  \frac{ { \sin }^{2}A { \cos }^{2}B-  { \sin}^{2}B{ \cos }^{2}A }{ { \cos }^{2}A { \cos }^{2}B}

[By taking L.C.M]

 \frac{ { \sin}^{2}A(1 -  {\sin}^{2}B)  -   { \sin }^{2}B(1 -  { \sin}^{2}A)  }{{ \cos }^{2}A { \cos }^{2}B}\:\:\:\:[\text{From ---(1)}] \\  \\  \frac{ { \sin }^{2}A-{\sin}^{2}A { \sin}^{2}B -  { \sin}^{2}y +  { \sin }^{2}A {\sin}^{2}y }{{ \cos }^{2}A { \cos }^{2}B}  \\  \\\frac{ { \sin }^{2}A-\cancel{{ \sin }^{2}A { \sin}^{2}B}  -  {\sin}^{2}B+   \cancel{{ \sin }^{2}A { \sin}^{2}B} }{{ \cos }^{2}A { \cos }^{2}B} \\  \\ \dfrac{ { \sin}^{2}A - { \sin}^{2} B}{ { \cos}^{2}A { \cos }^{2}B}

 \therefore L.H.S = R.H.S [Proved]

{\boxed{\text{\blue{Some Important Trigonometry Rules}}}}

sinø . cosecø = 1

cosø . secø = 1

tanø . cotø = 1

sin²ø + cos²ø = 1 ---(1)

cosec²ø - cot² = 1

sec²ø - tan²ø = 1

Similar questions