Math, asked by muhammedziyan047, 3 months ago

Pls answer these questions
Grade 7 algebraic expressions

Attachments:

Answers

Answered by Yuseong
5

Required Solutions :

Steps involved :

  • Whenever we subtract algebraic expressions, we firstly collect the like terms in order.
  • Then, we subtract it as usual substraction.

Subtract :

(I)  \sf{ -5{y}^{2} \: from \: {y}^{2} }

We have to subtract  \sf{ -5{y}^{2} \: from \: {y}^{2} } , ie

 \sf {\longrightarrow {y}^{2} - ( - 5{y}^{2} ) }

As there is a minus (-) sign before the bracket, so (-) × (-) = (+) .

 \sf {\longrightarrow {y}^{2} + 5{y}^{2} }

 \longrightarrow \boxed{ \sf \red { 6{y}^{2} }}

________________________

 \sf{(ii) \: 6xy \: from \:  - 12xy}

\sf {\longrightarrow  - 12xy - 6xy }

 \longrightarrow \boxed{ \sf \red { 18 xy}}

_________________________

\sf {(iii) \: (a - b) \: from \: (a + b) }

\sf {\longrightarrow  (a + b) - (a - b) }

As there is a minus (-) sign before the bracket, so sign of the digits under the bracket will be changed when we'll remove the bracket.

\sf {\longrightarrow  a + b - a  +  b }

Now, collect the like terms.

\sf {\longrightarrow  \cancel{ a  - a}+ b   +  b }

Performing addition.

 \longrightarrow \boxed{ \sf \red { 2b}}

________________________

\sf {(iv) \: a(b - 5) \: from \: b(5  - a) }

\sf {\longrightarrow  b(5 - a) - a(b - 5)}

Firstly, we will perform multiplication.

\sf {\longrightarrow  b(5) \times b( - a) - a(b) - a( - 5)}

\sf {\longrightarrow 5b   - ab - ab  + 5a}

 \longrightarrow \boxed{ \sf \red { 5b -2ab + 5a}}

________________________

 \sf { (v) \: {-m}^{2} + 5mn \: from \: 4{m}^{2} - 3mn + 8 }

 \sf { \longrightarrow 4{m}^{2} - 3mn + 8 - ( -{m}^{2} + 5 mn )}

 \sf { \longrightarrow 4{m}^{2} - 3mn + 8 + {m}^{2} - 5 mn }

 \sf { \longrightarrow 4{m}^{2} + {m}^{2} - 3mn - 5 mn + 8}

 \longrightarrow \boxed{ \sf \red { 5{m}^{2} - 8mn + 8}}

________________________

 \sf { (vi) \: -{x}^{2} + 10x - 5 \: from \: 5x - 10 }

 \sf { \longrightarrow 5x - 10 - ( -{x}^{2} + 10x - 5 ) }

 \sf { \longrightarrow 5x - 10 + {x}^{2} - 10x + 5  }

 \sf { \longrightarrow {x}^{2} + 5x - 10x- 10+ 5 }

 \longrightarrow \boxed{ \sf \red { {x}^{2} - 5x + 4}}

_______________________

Answered by KittyFarily
2

Subtract :-

(1) -5y² from y² = 6y²

(i) 6xy from -12xy = 18xy

ii) (a - b) from (a + b) = 2b

iv) a (b– 5) from b (5 – a) = 5a + 5b -2ab

v) -m2 + 5mn from 4m2 – 3mn + 8 = 5m² - 8mn + 8

vi) -x² + 10x - 5 from 5x - 10 = −7a² −7b² +10ab

Similar questions