Math, asked by shyjiamruth, 10 months ago

pls answer these Questions too ​

Attachments:

Answers

Answered by shadowsabers03
4

3.  Assume that \sf{(a,\ a)\in R} such that, by definition,

\longrightarrow\sf{a\leq a^3}

\longrightarrow\sf{a^3-a\geq 0}

\longrightarrow\sf{a(a-1)(a+1)\geq 0}

Solution to this inequality is,

\longrightarrow\sf{a\in[-1,\ 0]\cup[1,\ \infty)}

Since \sf{R} is defined on set of all real numbers \mathbb{R,}

\Longrightarrow\sf{(a,\ a)\notin R\quad\!\forall a\in\mathbb{R}}

Therefore, R is not reflexive.

We see \sf{(-2,\ -2)\notin R} hence R is not reflexive.

We see \sf{(-1,\ 2)\in R} but \sf{(2,\ -1)\notin R.} Hence R is not symmetric.

We see \sf{(9,\ 3)\in R} and \sf{(3,\ 2)\in R} but \sf{(9,\ 2)\notin R.} Hence R is not transitive.

4. (a)  Since \sf{a-a=0} is divisible by every non - zero real numbers, 0 is also divisible by 2, hence,

\longrightarrow\sf{(a,\ a)\in R\quad\!\forall a\in\mathbb{Z}}

since R is defined on set of all integers \mathbb{Z.}

Therefore, R is reflexive.

By definition, let,

\longrightarrow\sf{a-b=2m,\quad\!m\in\mathbb{Z}}

We see that,

\longrightarrow\sf{b-a=-(a-b)}

\longrightarrow\sf{b-a=-2m}

\Longrightarrow\sf{2\ divides\ (b-a)}

\Longrightarrow\sf{(b,\ a)\in R}

Therefore, R is symmetric.

Assume \sf{(b,\ c)\in R} such that 2 divides (b - c).

Since 2 divides both (a - b) and (b - c), 2 can divide their sum too.

\longrightarrow\sf{2\ divides\ (a-b)+(b-c)}

\longrightarrow\sf{2\ divides\ (a-c)}

Therefore, R is transitive.

Hence R is an equivalence relation.

4. (b)  In an equivalence relation \sf{R,} equivalence class of \sf{a} denoted by \sf{[a]} is the set of all possible values of \sf{b} for which \sf{(a,\ b)\in R.}

According to the question let \sf{a=0.} Then by definition,

\longrightarrow\sf{2\ divides\ (0-b)}

\longrightarrow\sf{2\ divides\ (-b)}

This implies \sf{b} must be an even number. Hence, since R is defined on \mathbb{Z,}

\longrightarrow\sf{b\in\{2n:n\in\mathbb{Z}\}}

This set is the same as the equivalence class [0].

\longrightarrow\underline{\underline{\sf{[0]=\{2n:n\in\mathbb{Z}\}}}}

or,

\longrightarrow\underline{\underline{\sf{[0]=\{0,\ \pm2,\ \pm4,\ \pm6,\,\dots\}}}}

Similarly, take \sf{a=1.} Then by definition,

\longrightarrow\sf{2\ divides\ (1-b)}

This implies \sf{b} must be odd since 1 is an odd number. Hence,

\longrightarrow\sf{b\in\{2n+1:n\in\mathbb{Z}\}}

Therefore,

\longrightarrow\underline{\underline{\sf{[1]=\{2n+1:n\in\mathbb{Z}\}}}}

or,

\longrightarrow\underline{\underline{\sf{[1]=\{\pm1,\ \pm3,\ \pm5,\,\dots\}}}}

4. (c)  We see that,

\longrightarrow\sf{[0]\cap[1]=\phi}

and,

\longrightarrow\sf{[0]\cup[1]=\{0,\ \pm1,\ \pm2,\ \pm3,\ \pm4,\,\dots\}}

\longrightarrow\sf{[0]\cup[1]=\mathbb{Z}}

Hence we can say \sf{[0]} and \sf{[1]} form a partition of \mathbb{Z.}

5. (a)  Here R is reflexive since \sf{x-x=0} is an integer, i.e., \sf{(x,\ x)\in R\quad\!\forall x\in\mathbb{Z}.}

5. (b)  Let \sf{x-y=m} be an integer.

We see \sf{y-x=-m} is also an integer. Hence \sf{(y,\ x)\in R.}

Therefore, R is symmetric.

Assume there exists \sf{(y,\ z)\in R} such that \sf{y-z=n} is an integer.

Since sum of two integers is always an integer, we see,

\longrightarrow\sf{(x-y)+(y-z)=m+n}

\longrightarrow\sf{x-z=m+n}

Here m and n are integers, so are \sf{m+n} and \sf{x-z.}

Hence, \sf{(x,\ z)\in R.}

Therefore, R is transitive.

Hence, R is an equivalence relation.

Similar questions