Math, asked by arunsgh3376, 3 months ago

pls answer this ↑↑↑


Attachments:

Answers

Answered by BrainlyRish
5

Given that : Measures of three sides of the triangle are 18 cm and 10 cm  and Perimeter of Triangle is 42 cm.

⠀⠀⠀⠀

Now,

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀Finding Third Side of Triangle :

\star\: \boxed{\sf{\blue{P_{\:(perimeter)} = a + b + c}}}

\sf{Here}\begin{cases}\sf{\:\:\:a = 18 \ cm}\\\sf{\:\:\: b = 10 \ cm}\\\sf{\:\;\:c = ?? \ cm}\\\sf{\:\:\:Perimeter=42cm} \end{cases}

⠀⠀⠀

:\implies\sf 42 = 10 + 18 + c \\\\\\:\implies\sf 42 = 28 + c  \\\\\\:\implies\sf c = 42 - 28\\\\\\:\implies{\underline{\boxed{\sf{\pink{c = 14\:cm}}}}}

\therefore\:{\underline{\sf{Hence, \ Third\:Side\:of\:  \ \triangle \ is \ \bf{14 \ cm}.}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Finding Semi-Perimeter of Triangle :

⠀⠀⠀⠀

\star\: \boxed{\sf{\blue{s_{\:(Semiperimeter)} = \dfrac{a + b + c}{2}}}}

⠀⠀⠀

\sf{Here}\begin{cases}\sf{\:\:\:a = 18 \ cm}\\\sf{\:\:\: b = 10 \ cm}\\\sf{\:\;\:c = 14 \ cm}\end{cases}

⠀⠀⠀

:\implies\sf s = \dfrac{18 + 10 + 14}{2} \\\\\\:\implies\sf s = \cancel\dfrac{42}{2}\\\\\\:\implies{\underline{\boxed{\sf{\pink{s = 21 \:cm}}}}}

⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ Semi- perimeter \ \triangle \ is \ \bf{21 \ cm}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀⠀Finding Area of Triangle :

\star\:\boxed{\sf{\pink{Area_{\triangle} = \sqrt{s(s - a) (s - b) (s - c)}}}}

⠀⠀⠀⠀

\begin{gathered}\dag\;{\underline{\frak{Substituting \ values \ in \ the \ formula,,}}}\\ \\\end{gathered}

⠀⠀⠀

:\implies\sf Area_{\triangle} = \sqrt{21(21 - 18) (21 - 10) (21 - 14)}\\\\\\:\implies\sf Area_{\triangle} = \sqrt{21 \times 3 \times 11 \times 7} \\\\\\:\implies\sf Area_{\triangle} = \sqrt{4851}\\\\\\:\implies\sf Area_{\triangle} = \sqrt{21\times 21 \times 11}\\\\\\:\implies\sf Area_{\triangle} = \sqrt{21^{2} \times 11}\\\\\\:\implies{\underline{\boxed{\frak{\purple{ Area_{\triangle} = 21\sqrt{11}}}}}}\:\bigstar

⠀⠀⠀⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ area \ of \ the \ \triangle \ is \ \bf{21 \sqrt{11} \ cm^2}.}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by llsmilingsceretll
3

Given that :

  • Measures of three sides of the triangle are 18 cm and 10 cm and Perimeter of Triangle is 42 cm.

⠀⠀⠀⠀

Now,

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀Finding Third Side of Triangle :

\star\: \boxed{\sf{\blue{P_{\:(perimeter)} = a + b + c}}}

\begin{gathered}\sf{Here}\begin{cases}\sf{\:\:\:a = 18 \ cm}\\\sf{\:\:\: b = 10 \ cm}\\\sf{\:\;\:c = ?? \ cm}\\\sf{\:\:\:Perimeter=42cm} \end{cases}\end{gathered}

⠀⠀⠀

\begin{gathered}:\implies\sf 42 = 10 + 18 + c \\\\\\:\implies\sf 42 = 28 + c \\\\\\:\implies\sf c = 42 - 28\\\\\\:\implies{\underline{\boxed{\sf{\pink{c = 14\:cm}}}}}\end{gathered}

\therefore\:{\underline{\sf{Hence, \ Third\:Side\:of\: \ \triangle \ is \ \bf{14 \ cm}.}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Finding Semi-Perimeter of Triangle :

⠀⠀⠀⠀

\star\: \boxed{\sf{\blue{s_{\:(Semiperimeter)} = \dfrac{a + b + c}{2}}}}

⠀⠀⠀

\begin{gathered}\sf{Here}\begin{cases}\sf{\:\:\:a = 18 \ cm}\\\sf{\:\:\: b = 10 \ cm}\\\sf{\:\;\:c = 14 \ cm}\end{cases}\end{gathered}

⠀⠀⠀

\begin{gathered}:\implies\sf s = \dfrac{18 + 10 + 14}{2} \\\\\\:\implies\sf s = \cancel\dfrac{42}{2}\\\\\\:\implies{\underline{\boxed{\sf{\pink{s = 21 \:cm}}}}}\end{gathered}

⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ Semi- perimeter \ \triangle \ is \ \bf{21 \ cm}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀⠀Finding Area of Triangle :

\star\:\boxed{\sf{\pink{Area_{\triangle} = \sqrt{s(s - a) (s - b) (s - c)}}}}

⠀⠀⠀⠀

\begin{gathered}\begin{gathered}\dag\;{\underline{\frak{Substituting \ values \ in \ the \ formula,,}}}\\ \\\end{gathered}\end{gathered}

⠀⠀⠀

\begin{gathered}:\implies\sf Area_{\triangle} = \sqrt{21(21 - 18) (21 - 10) (21 - 14)}\\\\\\:\implies\sf Area_{\triangle} = \sqrt{21 \times 3 \times 11 \times 7} \\\\\\:\implies\sf Area_{\triangle} = \sqrt{4851}\\\\\\:\implies\sf Area_{\triangle} = \sqrt{21\times 21 \times 11}\\\\\\:\implies\sf Area_{\triangle} = \sqrt{21^{2} \times 11}\\\\\\:\implies{\underline{\boxed{\frak{\purple{ Area_{\triangle} = 21\sqrt{11}}}}}}\:\bigstar\end{gathered}

⠀⠀⠀⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ area \ of \ the \ \triangle \ is \ \bf{21 \sqrt{11} \ cm^2}.}}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions