pls answer this .....i ll mark u as brainliest
Attachments:
Answers
Answered by
1
Answer:
here,
sinθ+cosθ=√3
orsquaring on both sides
(sinθ+cosθ)²=(√3)²
or, sin²θ+2sinθcosθ+cos²θ=3
or,1+2sinθcosθ=3
or,2sinθcosθ=2
or,sinθcosθ=1
or,sinθcosθ=sin²θ+cos²θ
or,1=(sin²θ+cos²θ)/(sinθcosθ)
or,1=[{sin²θ/(sinθcosθ)}+{cos²θ/(sinθcosθ)}]
or,1=[(sinθ/cosθ)+(cosθ/sinθ)]
1=tanθ+cotθ
∴tanθ+cotθ=1
PROVED
Answered by
1
Answer:
sinx+cosx=√3
square both side
sin^2+cos^2+2sinxcosx=3
1+2sinxcox=3
sinxcosx=1
and prove tanx+cotx=1
so sinx/cosx+cosx/sinx=1
(sin^2x+cos^2)/sinxcosx=1
so. 1/sinxcos=1
we put the value of sinxcos=1
from above eq.
so 1/1=1
tanx+cotx=1
Similar questions
Math,
3 months ago
Math,
3 months ago
Math,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago