Math, asked by pratyushsuryawanshi1, 9 months ago

Pls answer this. I will mark as brainliest and follow you.

Attachments:

Answers

Answered by TheMoonlìghtPhoenix
11

Step-by-step explanation:

ANSWER:-

On first ,

 \frac{2 \sqrt{5}  + \sqrt{3} }{2 \sqrt{5}  -  \sqrt{3} }

We will do this by rationalizing it.

 \frac{2 \sqrt{5}  +  \sqrt{3} }{2 \sqrt{5}  -  \sqrt{3} }  \times  \frac{2 \sqrt{5}   +   \sqrt{3} }{2 \sqrt{5}   +  \sqrt{3} }

 =  \frac{ {(2 \sqrt{5} +  \sqrt{3} )}^{2}  }{(2 \sqrt{5}  -  \sqrt{3})(2 \sqrt{5}   +  \sqrt{3} )}

 \implies \:  \frac{20 + 3 + 4 \sqrt{15} }{ {(2 \sqrt{5}) }^{2} -  { (\sqrt{3} })^{2}  }

 \frac{23 + 4 \sqrt{15} }{17}

The above is the first one..

Now second Factor :-

 \frac{2 \sqrt{5}   -   \sqrt{3} }{2 \sqrt{5} +  \sqrt{3}  }

Same, as Rationalising it,

 \frac{2 \sqrt{5}  -  \sqrt{3}  }{2 \sqrt{5} +  \sqrt{3}  }  \times   \frac{2 \sqrt{5}  -  \sqrt{3} }{2 \sqrt{5}  -  \sqrt{3} }

 \implies \:  \frac{ {(2 \sqrt{5}  -  \sqrt{3}})^{2}  }{ {(2 \sqrt{5} })^{2} -  { (\sqrt{3} })^{2}  }

 \frac{23 - 4 \sqrt{15} }{17}

The above is the second one.

Now as we need to find the factor with root 15,

So we will keep it same, and our answer will be

 \frac{23 - 4 \sqrt{15}  + 23 + 4 \sqrt{15} }{17}

 \frac{46}{17}

So a = 46/17 and b = 0.

Similar questions