Math, asked by gurjas14325, 1 month ago

pls answer this . if someone try to annoy then i will report ​

Attachments:

Answers

Answered by siddhantjani25
1

\sqrt{2}Answer:4

Step-by-step explanation: 1 +\sqrt{2} = n

(n - 1/n )²

1 / 1 +\sqrt{2} = 1 / 1 +\sqrt{2}  x 1 -√2 / 1 -\sqrt{2}

1 -√2/ (1)² - (√2)²

1-√2/ 1 - 2

1-√2/-1

-1 + √2

√2 - 1 = 1 / 1 +\sqrt{2}

(1 +√2 -√2 + 1)²

(1 + 1)²

=2²

= 4

(TRUST ME THATS THE ANSWER)

( MARK ME AS BRANIEST PLEASE)

Answered by Athul4152
1

ANSWER = 4

 \huge\sf\underline{\underline{ Given:-}}

 \large\sf\boxed{x = 1 + √2  }

 \huge\sf\underline{\underline{To \: Find:-}}

  \sf value \: of \:  (x + \frac{1}{x})^{2} \\

 \huge\sf\underline{\underline{Formulas \: Used:-}}

  •  (a+b)² = a² + 2ab + b²
  •  (a - b)² = a² - 2ab + b²
  •  \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \\
  •  (a+b)(a-b) =a² - b²

 \huge\sf\underline{\underline{ ANSWER:-}}

 \large\sf\boxed{x = 1 + √2  }

\sf (x -  \frac{1}{x} ) {}^{2}  =  {x}^{2}  - 2.x. \frac{1}{x}  + ( \frac{1}{x} ) {}^{2}  \\

 \sf\pink{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {x}^{2}  - 2 +  \frac{1}{ {x}^{2} } } \\

 \rule{15cm}{0.02cm}

  • \sf (1 +  \sqrt{2} ) {}^{2}  - 2 +  \frac{1}{(1 +  \sqrt{2}) {}^{2}  }  \\

 \sf\implies \:  \: 1 + 2 \sqrt{2}  + 2 - 2 +  \frac{1}{(1 +  \sqrt{2}) {}^{2}  }  \\

\sf\implies \: 1 +  2\sqrt{2}  +  \frac{1}{3 + 2 \sqrt{2} }  \\

\sf\implies \: 1  +  2\sqrt{2}  +  \frac{3 -  2\sqrt{2} }{ {3}^{2} - (2 \sqrt{2}) {}^{2}   }  \\

\sf\implies \: 1 + 2 \sqrt{2}  +  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\

\sf\implies \: 1 + 3  + 2 \sqrt{2}  - 2 \sqrt{2}

\sf\pink{\implies \: 4}

 \rule{15cm}{0.02cm}

Similar questions