pls answer this question
Answers
Answer:
Step-by-step explanation:
BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST
Answer:
TanA.TanB.TanC
Step-by-step explanation:
tanA + tanB + tanC - Sin(A+B + C)/CosACosBCosC
= SinA/CosA + SinB/CosB + SinC/CosC - Sin(A+B + C)/CosACosBCosC
= (SinACosB + CosASinB)/CosACosB + SinC/CosC - Sin(A+B + C)/CosACosBCosC
now using Sin(A+B) = SInACosB + CosASinB
= Sin(A+B)/CosACosB + SinC/CosC - Sin(A+B + C)/CosACosBCosC
= (Sin(A+B)CosC + CosACosBSinC - Sin(A+B + C))/CosACosBCosC
= (Sin(A+B)CosC + CosACosBSinC - (Sin(A+B)CosC + Cos(A+B)SinC))/CosACosBCosC
= (CosACosBSinC - Cos(A+B)SinC))/CosACosBCosC
= (CosACosBSinC - (CosACosB - SinASinB)SinC)/CosACosBCosC
= (CosACosBSinC - CosACosBSinC + SinASinBSinC)/CosACosBCosC
= SinASinBSinC/CosACosBCosC
= (sinA/CosA).(SinB/CosB).(SinC/CosC)
= TanA.TanB.TanC
tanA + tanB + tanC - Sin(A+B + C)/CosACosBCosC = TanA.TanB.TanC