Math, asked by hariharan108, 11 months ago

pls answer this question ​

Attachments:

Answers

Answered by brunoconti
1

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by amitnrw
2

Answer:

TanA.TanB.TanC

Step-by-step explanation:

tanA + tanB  + tanC  -  Sin(A+B + C)/CosACosBCosC

= SinA/CosA + SinB/CosB + SinC/CosC -  Sin(A+B + C)/CosACosBCosC

= (SinACosB + CosASinB)/CosACosB + SinC/CosC -  Sin(A+B + C)/CosACosBCosC

now using Sin(A+B) = SInACosB + CosASinB

= Sin(A+B)/CosACosB + SinC/CosC -  Sin(A+B + C)/CosACosBCosC

= (Sin(A+B)CosC + CosACosBSinC  - Sin(A+B + C))/CosACosBCosC

= (Sin(A+B)CosC + CosACosBSinC  - (Sin(A+B)CosC + Cos(A+B)SinC))/CosACosBCosC

=  (CosACosBSinC   - Cos(A+B)SinC))/CosACosBCosC

=  (CosACosBSinC   - (CosACosB - SinASinB)SinC)/CosACosBCosC

=  (CosACosBSinC   - CosACosBSinC + SinASinBSinC)/CosACosBCosC

= SinASinBSinC/CosACosBCosC

= (sinA/CosA).(SinB/CosB).(SinC/CosC)

= TanA.TanB.TanC

tanA + tanB  + tanC  -  Sin(A+B + C)/CosACosBCosC = TanA.TanB.TanC

Similar questions