Math, asked by hariharan108, 1 year ago

pls answer this question ​

Attachments:

Answers

Answered by rishu6845
2

give me best ans and thanks plzzzzz

Attachments:
Answered by sivaprasath
3

Answer:

Step-by-step explanation:

Given :

f_n(x)=\frac{sinx}{cos3x} + \frac{sin3x}{cos3^2x} + \frac{sin3^2x}{cos3^3x} + \frac{sin3^3x}{cos3^4x} +...+\frac{sin3^{(n-1)}x}{cos3^nx}

Then,

find :

f_2(\frac{\pi }{4})+f_3(\frac{\pi }{4})

Solution :

f_2(\frac{\pi }{4}) = \frac{sin(\frac{\pi}{4})}{cos3(\frac{\pi}{4})} + \frac{sin3(\frac{\pi}{4})}{cos3^2(\frac{\pi}{4})}

f_2(\frac{\pi }{4}) = \frac{sin45}{cos3(45)} + \frac{sin3(45)}{cos9(45)}

f_2(\frac{\pi }{4}) = \frac{sin45}{cos135} + \frac{sin135}{cos405}

f_2(\frac{\pi }{4}) = \frac{\frac{1}{\sqrt{2} } }{-\frac{1}{\sqrt{2}}} + \frac{\frac{1}{\sqrt{2} } }{\frac{1}{\sqrt{2} } } = (-1) + 1 = 0

f_3(\frac{\pi }{4})

f_2(\frac{\pi }{4}) + \frac{sin\ 3^2(\frac{\pi }{4} )}{cos \ 3^3(\frac{\pi }{4}) }

0 + \frac{sin\ 9(45)}{cos \ 27(45)} = \frac{sin225}{cos1215} = \frac{-\frac{1}{\sqrt{2} } }{-\frac{1}{\sqrt{2}}} =1 = 1

f_2(\frac{\pi }{4})+f_3(\frac{\pi }{4}) = 1

Similar questions
Math, 6 months ago