Math, asked by gamerojas2003, 11 months ago

pls answer this question​

Attachments:

Answers

Answered by ITzRadhe
10

\large\underline{\underline{\mathfrak{\red{\bf{SOLUTION:-}}}}}

\bold{\underline{\:Find\:Here:-}}

  • Valiue of x.

\large\underline{\underline{\mathfrak{\red{\bf{EXPLANATION-}}}}}

\bold{\boxed{\boxed{\:\frac{(x^2-x+1)}{(x^2+x+1)}\:=\frac{14(x-1)}{13(x+1)}}}}

\implies\:\frac{(x^2-x+1)(x+1)}{(x^2+x+1)(x-1)}\:=\frac{14}{13}

________________________

\large\red{\underline{\:Using\:identity}}

\red{\:(x+1)^3\:=\:(x+1)(x^2-x+1)}

\red{\:(x-1)^3\:=\:(x-1)(x^2+x+1)}

_______________________

\implies\frac{(x+1)^3}{(x-1)^3}\:=\frac{14}{13}

\implies\left(\frac{(x+1)}{(x-1)}\right)^3\:=\frac{14}{13}

\implies\frac{(x+1)}{(x-1)}\:=\sqrt[3]{\frac{14}{13}}

\implies\sqrt[3]{{13}}(x+1)\:=\sqrt[3]{{14}}(x-1)

\implies\:x(\sqrt[3]{{14}}\:-\sqrt[3]{{13}})\:=\:(\sqrt[3]{{14}}\:-\sqrt[3]{{13}})

\implies\:x\:=\cancel{\frac{(\sqrt[3]{{14}}\:-\sqrt[3]{{13}})}{(\sqrt[3]{{14}}\:-\sqrt[3]{{13}}}}

\red{\bold{\boxed{\boxed{\:x\:=\:1}}}}

\large\underline{\underline{\mathfrak{\green{\bf{ANSWER:-}}}}}

  • Value of x = 1.
Similar questions