Math, asked by rohaan2004ali, 10 months ago

pls answer this question

Attachments:

Answers

Answered by shadowsabers03
1

(a)

(i)

\displaystyle\longrightarrow\sf {|\vec {AB}|=\sqrt {(-8)^2+15^2}}

\displaystyle\longrightarrow\sf {|\vec {AB}|=\sqrt {64+225}}

\displaystyle\longrightarrow\sf {|\vec {AB}|=\sqrt {289}}

\displaystyle\longrightarrow\sf {\underline {\underline {|\vec {AB}|=17}}}

(ii)

Let the coordinates of B be \displaystyle\sf {(x_b,\ y_b).}

Then,

\displaystyle\begin {aligned}\longrightarrow\quad&\sf {x_b-10=-8,}&\quad&\sf{y_b-1=15}\\\\\longrightarrow\quad&\sf {x_b = -8 + 10,}&\quad&\sf{y_b=15 + 1}\\\\\longrightarrow\quad&\sf {x_b=2,}&\quad&\sf{y_b=16}\end{aligned}

Hence coordinates of B is \displaystyle\sf {\underline {\underline {(2,\ 16)}}.}

(b)

Since \displaystyle\sf {\vec {CD}=3\vec {AB},}

\displaystyle\longrightarrow\sf {\vec {CD}=\binom{-24}{45}}

(i)

Let the coordinates of D be \displaystyle\sf {(x_d,\ y_d).}

Then,

\displaystyle\begin {aligned}\longrightarrow\quad&\sf {x_d-42=-24,}&\quad&\sf{y_d-16=45}\\\\\longrightarrow\quad&\sf {x_d = -24+42,}&\quad&\sf{y_d=45+16}\\\\\longrightarrow\quad&\sf {x_d=18,}&\quad&\sf{y_d=61}\end{aligned}

Hence coordinates of D is \displaystyle\sf {\underline {\underline {(18,\ 61)}}.}

(ii)

\displaystyle\longrightarrow\sf {\vec {AD}=\binom{18-10}{61-1}}

\displaystyle\longrightarrow\sf {\underline {\underline {\vec {AD}=\binom{8}{60}}}}

(c)

(i)

\displaystyle\longrightarrow\sf {\vec {AE}=\binom{k-10}{16-1}}

\displaystyle\longrightarrow\sf {\underline {\underline {\vec {AE}=\binom{k-10}{15}}}}

(ii)

Since \displaystyle\sf {AED} is a straight line and \displaystyle\sf {\vec {CD}=3\vec {AB},}

\displaystyle\longrightarrow\sf {\vec {ED}=3\vec {AE}}

Because the triangles \displaystyle\sf {ABE} and \displaystyle\sf {CDE} are similar and they're scaled by a factor 3.

So,

\displaystyle\longrightarrow\sf {\binom {18-k}{61-16}=3\binom {k-10}{15}}

\displaystyle\longrightarrow\sf {\binom {18-k}{45}=\binom {3k-30}{45}}

From this,

\displaystyle\longrightarrow\sf {18-k=3k-30}

\displaystyle\longrightarrow\sf {\underline {\underline {k=12}}}

(d)

As said earlier, the triangles \displaystyle\sf {ABE} and \displaystyle\sf {CDE} are similar and they're scaled by a factor 3.

Hence their areas are scaled by a factor of 3² = 9.

\displaystyle\therefore\sf {\underline {\underline {\dfrac {Area\ of\ triangle\ ABE}{Area\ of\ triangle\ CDE}=\dfrac {1}{9}}}}

Similar questions