Math, asked by chiraggarg, 10 months ago

Pls answer this question.

Attachments:

Answers

Answered by BrainlyPopularman
1

Answer:

GIVEN EQUATION :

a {x}^{2}  + bx + c = 0

it's roots are

 \alpha  \:  \: and \:  \:  \beta

TO FIND :

 {( \frac{1}{ { \alpha }^{2}  } -  \frac{1}{ { \beta }^{2} } ) }^{2}

SOLUTION :

 =  {( \frac{1}{ { \alpha }^{2}  }  -  \frac{1}{ { \beta }^{2} }) }^{2}  \\  \\  =  {( \frac{ { \alpha }^{2} -    { \beta }^{2}  }{ {( \alpha  \beta )}^{2} }) }^{2}  \\  \\  =  \frac{ {( \alpha  +  \beta )}^{2}{( \alpha  -  \beta )}^{2}  }{ {( \alpha  \beta )}^{4} }  \\  \\  =  \frac{ {( \frac{ - b}{a} )}^{2}  {( \frac{ \sqrt{d} }{a} )}^{2}}{( { \frac{c}{a} )}^{4} }  \\  \\  =  \frac{ (\frac{ {b}^{2} }{ {a}^{2} } ) \frac{( {b}^{2} - 4ac) }{( {a}^{2}) } }{ { (\frac{c}{a}) }^{4} }  \\  \\  =  \frac{ ({b}^{2})( {b}^{2} - 4ac)  }{ {c}^{4} }

OPTION (D) IS CORRECT

IF YOU LIKE MY ANSWER THEN FOLLOW ME...

Similar questions