Math, asked by RheaMasih, 10 months ago

pls answer this question....

Attachments:

Answers

Answered by Anonymous
198

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow PQR\:is\:a\:triangle\:which\:is\:inscribed\:in\:a\:semicircle.

\sf\dashrightarrow PQ=PR=7cm

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow 1)measure\:of\: \angle QPR

\sf\dashrightarrow 2)the\:area\:of\:shaded\:region

\large\underline\bold{SOLUTION,}

FINDING QR,

\sf\therefore in \: \triangle QPR

\sf\large\therefore \: BY\: PYTHAGORAS\:THEOREM.

\sf\dashrightarrow QR^2=QP^2+PR^2

\sf\implies QR^2= (7)^2+(7)^2

\sf\implies QR^2= 49+49

\sf\implies QR= \sqrt{98}

\sf\implies QR= \sqrt{ 7\times 2}

\sf\implies QR=7 \sqrt{2}

\large{\boxed{\bf{QR= 7\sqrt{2} }}}

\sf\large\star \red{QUESTION.1}

\sf\star \purple{what \:is\: the\: measure\: of\: \angle  QPR}

ANSWER:-

\sf\therefore in\: \triangle QPR

\sf\dashrightarrow using\: trigonometric\:ratios.\:we\:get,

\sf\therefore in\: \triangle PQR, \:

\sf\dashrightarrow PQ=PR

\sf\therefore cos \theta= \dfrac{(opposite)^2+(adjacent)^2- (hypotenuse)^2}{ 2 \times (opposite \times adjacent)}

\sf\implies cos \theta= \dfrac{(7)^2+(7)^2-(7\sqrt{2})^2}{2 \times 7 \times 7}

\sf\implies \dfrac{ 49+49-98}{98}

\sf\implies \dfrac{98-98}{98}

\sf\implies \dfrac{0}{98}

\sf\therefore cos \theta =0

\sf\therefore cos 90 \degree = 0

\sf\dashrightarrow \theta = 90 \degree

\large{\boxed{\bf{ \star\:\: \angle QPR=90 \degree \:\: \star}}}

\sf\therefore NOTE:-QR\:is\:a\:diameter.

\sf\therefore RADIUS= \dfrac{QR}{2}

\sf\implies RADIUS = \dfrac{7 \sqrt{2}}{2}

\large{\boxed{\bf{ radius\:of\:the\: semicircle= \dfrac{7 \sqrt{2}}{2}}}}

\sf\large\star \red{QUESTION.2}

\purple{\text{what is the area of shaded region. }}

ANSWER:-

\sf{\boxed{\bf{ \star\:\: area \:of\:shaded\:region= \dfrac{\pi r^2}{2} - \dfrac{1}{2} \times b \times h \:\: \star}}}

\sf\therefore \bigg( \dfrac{\pi \bigg(\dfrac{7 \sqrt{2}}{2} \bigg)^2}{2} \bigg)  - \bigg( \dfrac{1}{2} \times b \times h \bigg)

\sf\implies \bigg( \dfrac{ \dfrac{22}{7} \times \bigg( \dfrac{7 \sqrt{2}}{2 } \bigg)^2}{2} \bigg) - \dfrac{1}{2} \times 7 \times 7

\sf\implies \bigg( \dfrac{ \dfrac{22}{\cancel{7}} \times \bigg( \dfrac{\cancel{49 }\times \cancel{2}}{\cancel{2} } \bigg)^2}{2} \bigg) - \dfrac{1}{2} \times 7 \times 7

\sf\implies \dfrac{22 \times 7}{2}- \dfrac{49}{2}

\sf\implies \dfrac{154-49}{2}

\sf\implies \dfrac{105}{2}

\sf\implies \cancel \dfrac{105}{2}

\sf\implies 52.5cm^2

\large{\boxed{\bf{ \star\:\: area\:of\:shaded\:region\:is\:52.5cm^2\:\: \star}}}

\large\underline\bold{AREA\:OF\:SHADED\:REGION\:IS\:52.5cm^2}

_____________________

Similar questions