Math, asked by tarashivnani, 4 months ago

Pls answer this question

Attachments:

Answers

Answered by AngelineSudhagar
0

Answer:

 \huge  { \green{ {\boxed{Solution}}}}

 \implies \dfrac{cosec \:  \theta}{cosec \:\theta - 1 }  +  \dfrac{cosec \: \theta}{cosec \: \theta + 1}

 \implies  \dfrac{cosec  \: \theta \: (cosec \:\theta + 1) + cosec  \: \theta \: (cosec \:\theta  -  1)}{ {cosec  \: \theta}^{2} - 1 }

   \implies\dfrac{{cosec \: }^{2}  \theta + cosec \:  \theta \:  +  {cosec \: }^{2}  \theta  -  cosec \:  \theta \: }{ {cosec \: }^{2}  \theta \:  - 1}

 \implies \dfrac{ 2  \: {cosec}^{2}  \theta \: }{{cosec \: }^{2}  \theta - 1}

after this proceed by taking cosec^2 - 1 = cot^2

Similar questions