pls answer this question
Answers
Answer:
1
Step-by-step explanation:
Given:
a + 1/b = 3 ---- (1)
b + 1/c = 4 ----- (2)
c + 1/a = 9/11 ----- (3)
Equation (1) can be written as,
⇒ a + 1/b = 3
⇒ a = 3 - (1/b)
⇒ a = (3b - 1)/b
Then, 1/a = (b)/(3b - 1) ---- (4)
Equation (2) Can be written as,
⇒ b + 1/c = 4
⇒ 1/c = 4 - b
⇒ c = 1/(4 - b) ----- (5)
Equation (4) & (5) can be solved as,
⇒ (1/a) + c = (b/3b - 1) + (1/4 - b)
⇒ 9/11 = (4b - b² + 3b - 1)/(12b - 4 - 3b² + b)
⇒ 9/11 = (7b - b² - 1)/(13b - 3b² - 4)
⇒ 9(13b - 3b² - 4) = 11(7b - b² - 1)
⇒ 117b - 27b² - 36 = 77b - 11b² - 11
⇒ -16b² + 40b - 25 = 0
⇒ 16b² - 40b + 25 = 0
⇒ (4b - 5)² = 0
⇒ 4b = 5
⇒ b = 5/4
Then, Substitute b = 5/4 in (1), we get
⇒ a + 1/b = 3
⇒ a = 3 - 1/b
⇒ a = 3 - 4/5
⇒ a = 11/5.
Substitute b = 5/4 in (5), we get
⇒ c = 1/4 - b
⇒ c = 1/(4 - 5/4)
⇒ c = 4/11.
Now,
abc = (5/4) * (11/5) * (4/11)
= 1.
Hope it helps!
Step-by-step explanation:
a+1/b=3 , b+1/c=4 , c+1/a =9/11
(a+1/b)(b+1/c)=3×4
or, (ab+a/c+1+1/bc)=12
or, ab+a/c+1/bc=12–1=11
(c+1/a)(ab+a/c+1/bc)=(9/11)×11
or, abc+a+1/b+b+1/c+1/abc=9
or, abc+3+4+1/abc=9
or, abc+(1/abc)=9–7=2
or, {( abc)^2+1}/abc=2
or, ( abc)^2+1=2abc
or, (abc)^2-2abc+1=0
or, ( abc-1)^2=0
or, abc-1=0
or, abc=1