Math, asked by siddhant88, 1 year ago

pls answer this question​

Attachments:

Answers

Answered by bhumitodi22
3
here's ur answer mate...
Attachments:

bhumitodi22: pls Mark as brainliest
siddhant88: thanks
bhumitodi22: wlcm
bhumitodi22: Mark as brainliest pls
Anonymous: its wrong ... that wud be ( root 5 - 1 )^2 not 5 - 1
Answered by Anonymous
5
 \bf \: Solution:

Question = \mathsf {\frac{ \sqrt{2} }{ \sqrt{10} - \sqrt{5} + 1 } }

 \mathsf= > \frac{ \sqrt{2} }{ \sqrt{10} - \sqrt{5} + 1} \times \frac{ \sqrt{10 + \sqrt{5 - 1} } }{ \sqrt{10 + \sqrt{5 - 1} } }

 \mathsf= > \frac{ \sqrt{2( \sqrt{10 + \sqrt{5 - 1)} } } }{( { \sqrt{10} }^{2} )- ({ \sqrt{5} }^{2}) - ({ \sqrt{1} )}^{2} }

 = > \frac{ \sqrt{20 + \sqrt{10 - \sqrt{2} } } }{10 - 5 + 1}

 = > \frac{ \sqrt{20 + \sqrt{10 - \sqrt{2} } } }{10 - 6}

 = > \frac{ \sqrt{2 + \sqrt{10 - \sqrt{2} } } }{4}
Similar questions