pls answer this question
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given relation
sin
x
+
sin
2
x
+
sin
3
x
=
1
⇒
sin
x
+
sin
3
x
=
1
−
sin
2
x
⇒
(
sin
x
+
sin
3
x
)
2
=
(
1
−
sin
2
x
)
2
⇒
sin
2
x
+
sin
6
x
+
2
sin
4
x
=
cos
4
x
⇒
1
−
cos
2
x
+
(
1
−
cos
2
x
)
3
+
2
(
1
−
cos
2
x
)
2
=
cos
4
x
⇒
1
−
cos
2
x
+
1
−
3
cos
2
x
+
3
cos
4
x
−
cos
6
x
+
2
−
4
cos
2
x
+
2
cos
4
x
=
cos
4
x
⇒
cos
6
x
−
4
cos
4
x
+
8
cos
2
x
=
4
Answered by
1
Answer:
Step-by-step explanation:
Sin theta + sin^3 theta = 1- sin^2 theta
Sin theta (1+ sin^2 theta) = cos^2theta
Squaring on both sides
Sin^2 theta(1+ sin^2theta)^2 = cos^4 theta
(1- cos^2theta)(2-cos^2 theta )^2= cos^4 theta
S(1-cos^2 theta) (4 + cos^4 theta-4cos^theta)
4 + cos^4theta - 4cos^2 theta-4cos^2 theta - cos^6 theta + 4 cos^4theta =cos^4 theta
4-8cos^2 theta - cos^6 theta + cos^4 theta =0
8cos^2 theta + cos^6 theta - 4cos ^4 theta = 4
Hence, proved
Umachandru238:
Pls mark me as brainliest pls pls
Similar questions