Math, asked by s2m6, 2 months ago

Pls answer this question...
( Ans: ____-1____ )
2√(1-x^2)
I need detailed solved answer...​

Attachments:

Answers

Answered by Leiro
2

Answer:

0/0

Step-by-step explanation:

Thats so simple youll just cancel out all the similar variables and turn it into 1

Answered by TheValkyrie
9

Answer:

\sf \dfrac{dy}{dx}=  \dfrac{-1}{2\sqrt{1-x^2} }

Step-by-step explanation:

Given:

\sf y= \bigg(cot^{-1}\: \dfrac{\sqrt{1+x}-\sqrt{1-x}  }{\sqrt{1+x}+\sqrt{1-x}  } \bigg)

To Find:

dy/dx

Solution:

By given,

\sf y= \bigg(cot^{-1}\: \dfrac{\sqrt{1+x}-\sqrt{1-x}  }{\sqrt{1+x}+\sqrt{1-x}  } \bigg)

Let us put x = cos θ

Hence,

\sf y= \bigg(cot^{-1}\: \dfrac{\sqrt{1+cos\:\theta}-\sqrt{1-cos\:\theta}  }{\sqrt{1+cos\:\theta}+\sqrt{1-cos\:\theta}  } \bigg)

Now we know that,

\sf cos\: \theta=2\:cos^2\: \dfrac{\theta}{2} -1=1-2\:sin^2\:\dfrac{\theta}{2}

Therefore,

\sf \implies \bigg(cot^{-1}\: \dfrac{\sqrt{1+2\:cos^2\:\frac{\theta}{2} -1}-\sqrt{1-(1-2\:sin^2\:\frac{\theta}{2} })  }{\sqrt{1+2\:cos^2\:\frac{\theta}{2} -1}+\sqrt{1-(1-2\:sin^2\:\frac{\theta}{2} })}  } \bigg)

\sf \implies \bigg(cot^{-1}\: \dfrac{\sqrt{2\:cos^2\:\frac{\theta}{2} }-\sqrt{2\:sin^2\:\frac{\theta}{2} }  }{\sqrt{2\:cos^2\:\frac{\theta}{2} }+\sqrt{2\:sin^2\:\frac{\theta}{2} }}  } \bigg)

\sf \implies \bigg(cot^{-1}\: \dfrac{\sqrt{2}\:cos\:\frac{\theta}{2} -\sqrt{2}\:sin\:\frac{\theta}{2}   }{\sqrt{2}\:cos\:\frac{\theta}{2} +\sqrt{2}\:sin\:\frac{\theta}{2} }  } \bigg)

Cancelling √2 on both numerator and denominator,

\sf \implies cot^{-1}\: \bigg(\dfrac{cos\:\frac{\theta}{2} -sin\:\frac{\theta}{2}   }{\:cos\:\frac{\theta}{2} +sin\:\frac{\theta}{2} }  } \bigg)

Now taking cos θ/2 common from both numerator and denominator,

\sf \implies cot^{-1}\: \bigg(\dfrac{cos\:\frac{\theta}{2} (1-\frac{sin\:\frac{\theta}{2} }{cos\:\frac{\theta}{2} } ) }{\:cos\:\frac{\theta}{2}(1 +\frac{sin\:\frac{\theta}{2} }{cos\frac{\theta}{2} })}  } \bigg)

\sf \implies cot^{-1}\: \bigg(\dfrac{1-\dfrac{sin\:\frac{\theta}{2} }{cos\:\frac{\theta}{2} }  }{1 +\dfrac{sin\:\frac{\theta}{2} }{cos\frac{\theta}{2} }}  } \bigg)

\sf \implies cot^{-1}\bigg(\dfrac{1-tan\:\frac{\theta}{2} }{1+tan\: \frac{\theta}{2} } \bigg)

\sf \implies cot^{-1}\bigg(\dfrac{1-tan\: \frac{\pi}{4}\times tan\:\frac{\theta}{2} }{tan\:\frac{\pi}{4} +tan\: \frac{\theta}{2} } \bigg)

We know that,

\sf cot(x+y)=\dfrac{1-tan\:x\times tan\:y}{tan\:x+tan\:y}

Therefore,

\sf \implies cot^{-1}\bigg(cot(\frac{\pi}{4} +\frac{\theta}{2} )\bigg)

\sf \implies \dfrac{\pi}{4} +\dfrac{\theta}{2}

Now if x = cos θ,

θ = cos⁻¹x

Substitute the value of θ,

\sf \implies \dfrac{\pi}{4} +\dfrac{cos^{-1}\:x}{2}

Now differentiating it,

\sf \dfrac{dy}{dx} =\dfrac{d}{dx} \bigg(\dfrac{\pi}{4} +\dfrac{cos^{-1}\:x}{2} \bigg)

\sf \implies \dfrac{-1}{2\sqrt{1-x^2} }

Similar questions