Math, asked by smartkid19, 1 day ago

pls answer this question asap.​

Attachments:

Answers

Answered by mathdude500
5

Given Question :-

The value of

\rm \: \:  \sqrt{7 - 3 \sqrt{5} } \: is \: equals \: to

 \:  \:  \:   \sf \: (a) \:  \:  \sqrt{7} - 2 \sqrt{3}

 \:  \:  \:   \sf \: (b) \:  \: \dfrac{3 -  \sqrt{5} }{ \sqrt{2} }

 \:  \:  \:   \sf \: (c) \:  \: \dfrac{ \sqrt{3}  -  \sqrt{7} }{ 2\sqrt{2} }

 \:  \:  \:   \sf \: (d) \:  \: \dfrac{ \sqrt{5}   + \sqrt{2} }{ 3 }

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: \sqrt{7 - 3 \sqrt{5} }

can be rewritten as

\rm \:  =  \:  \sqrt{\dfrac{2(7 - 3 \sqrt{5} )}{2} }

\rm \:  =  \:  \sqrt{\dfrac{14 - 6 \sqrt{5}}{2} }

\rm \:  =  \:  \sqrt{\dfrac{9 + 5- 2 \times 3 \times  \sqrt{5}}{2} }

\rm \:  =  \:  \sqrt{\dfrac{ {3}^{2}  +  { (\sqrt{5} ) \: }^{2} - 2 \times 3 \times  \sqrt{5}}{2} }

\rm \:  =  \:  \sqrt{\dfrac{ {3}^{2}  +  { (\sqrt{5} ) \: }^{2} - 2 \times 3 \times  \sqrt{5}}{ {( \sqrt{2}) \: }^{2} } }

\rm \:  =  \:  \sqrt{\dfrac{ {3}^{2} }{ {( \sqrt{2}) \: }^{2} }  + \dfrac{ {( \sqrt{5}) \:  }^{2} }{ {( \sqrt{2}) \: }^{2} }  - 2 \times \dfrac{3}{ \sqrt{2} }  \times \dfrac{ \sqrt{5} }{ \sqrt{2} } }

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{2} +  {y}^{2}  - 2xy =  {(x - y)}^{2} \: }}}

So, using this, we have

\rm \:  =  \:  \sqrt{ {\bigg[\dfrac{3}{ \sqrt{2} } -  \dfrac{ \sqrt{5} }{ \sqrt{2} }  \bigg]}^{2} }

\rm \:  =  \: \dfrac{3}{ \sqrt{2} }  - \dfrac{ \sqrt{5} }{ \sqrt{2} }

\rm \:  =  \: \dfrac{3 -  \sqrt{5} }{ \sqrt{2} }

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: \sqrt{7 - 3 \sqrt{5} }  =  \frac{3 -  \sqrt{5} }{ \sqrt{2} } \: }}

Thus,

  • Option (b) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Alternative Method

\rm :\longmapsto\: \sqrt{7 - 3 \sqrt{5} }

can be rewritten as

\rm \:  =  \:  \sqrt{\dfrac{2(7 - 3 \sqrt{5} )}{2} }

\rm \:  =  \:  \sqrt{\dfrac{14 - 6 \sqrt{5}}{2} }

\rm \:  =  \:  \sqrt{\dfrac{9 + 5- 2 \times 3 \times  \sqrt{5}}{2} }

\rm \:  =  \:  \sqrt{\dfrac{ {3}^{2}  +  { (\sqrt{5} ) \: }^{2} - 2 \times 3 \times  \sqrt{5}}{2} }

\rm \:  =  \:  \sqrt{\dfrac{ {(3 -  \sqrt{5}) \: }^{2} }{ {( \sqrt{2}) \: }^{2} } }

\rm \:  =  \: \dfrac{3 -  \sqrt{5} }{ \sqrt{2} }

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: \sqrt{7 - 3 \sqrt{5} }  =  \frac{3 -  \sqrt{5} }{ \sqrt{2} } \: }}

Thus,

  • Option (b) is correct
Similar questions