Math, asked by seemasethy1980, 1 day ago

Pls answer this question ASAP.​

Attachments:

Answers

Answered by mishtipandey029
0

Answer:

3root29 option 1st is your answer

Answered by user0888
11

\large\text{$\sqrt{ a^{2} +b^{2} +c^{2}}=87$}

Let's set a parameter k.

Then, k will satisfy the following equation.

\cdots \longrightarrow 3a=4b=6c=k

Now we have,

\boxed{ \begin{aligned} &\rightarrow a=\dfrac{k}{3}\\\\&\rightarrow b=\dfrac{k}{4}\\\\&\rightarrow c=\dfrac{k}{6}. \end{aligned} }

So,

\cdots \longrightarrow \dfrac{ k }{ 3 } + \dfrac{ k }{ 4 } + \dfrac{ k }{ 6 } = 27 \sqrt{29}

\cdots \longrightarrow \dfrac{ 9k }{ 12 } = 27 \sqrt{29}

\cdots \longrightarrow \dfrac{ 3k }{ 4 } = 27 \sqrt{29}

\cdots \longrightarrow k= \dfrac{4}{3} \times 27 \sqrt{29}

\cdots \longrightarrow k= 36 \sqrt{29}.

As we know,

\boxed{ \begin{aligned} \sqrt{ a^{2} +b^{2} +c^{2} }&=\sqrt{ \left(\dfrac{k}{3} \right)^{2} +\left( \dfrac{k}{4}\right)^{2} +\left( \dfrac{k}{6}\right)^{2} }\\\\&= \sqrt{ \dfrac{1}{9} + \dfrac{1}{16} + \dfrac{1}{36} }|k|\\\\&= \sqrt{ \dfrac{16+9+4}{144} }|k|\\\\&= \sqrt{ \dfrac{29}{144} } |k|\\\\&= \dfrac{ \sqrt{ 29 } }{12}\times 36\sqrt{29}\\\\&=3 \times 29\\\\&=87. \end{aligned} }

Hence, option (3) is correct.

Similar questions