Math, asked by YassuKris16, 3 months ago

pls answer this question correctly
Chapter=Trigonometry​

Attachments:

Answers

Answered by Anonymous
8

Question:-

To prove the identity.

Identity:-

\sf{\dfrac{1}{sec\theta - tan\theta} + \dfrac{1}{sec\theta + tan\theta} = \dfrac{2}{cos\theta}}

Solution:-

Taking LHS,

\sf{\dfrac{1}{sec\theta - tan\theta} + \dfrac{1}{sec\theta + tan\theta}}

= \sf{\dfrac{1}{\dfrac{1}{cos\theta} - \dfrac{sin\theta}{cos\theta}} + \dfrac{1}{\dfrac{1}{cos\theta} + \dfrac{sin\theta}{cos\theta}}}

= \sf{\dfrac{1}{\dfrac{1-sin\theta}{cos\theta}} + \dfrac{1}{\dfrac{1+sin\theta}{cos\theta}}}

= \sf{\dfrac{cos\theta}{1-sin\theta} + \dfrac{cos\theta}{1+sin\theta}}

Taking LCM

\sf{\dfrac{cos\theta(1+sin\theta) + cos(1-sin\theta)}{(1-sin\theta)(1+sin\theta)}}

= \sf{\dfrac{cos\theta + cos\theta sin\theta + cos\theta - cos\theta sin\theta}{1-sin^2\theta}}

= \sf{\dfrac{2cos\theta + \cancel{cos\theta sin\theta} - \cancel{cos\theta sin\theta}}{cos^2\theta}}

= \sf{\dfrac{2cos\theta}{cos^2\theta}}

= \sf{\dfrac{2}{cos\theta} = [RHS]}

______________________________________

Extra Information!!

Points to be remembered:-

  • \sf{sin\theta = \dfrac{1}{cosec\theta}}

  • \sf{cosec\theta = \dfrac{1}{sin\theta}}

  • \sf{cos\theta = \dfrac{1}{sec\theta}}

  • \sf{sec\theta =\dfrac{1}{cos\theta}}

  • \sf{tan\theta = \dfrac{1}{cot\theta}}

  • \sf{cot\theta = \dfrac{1}{tan\theta}}
  • Also, \sf{tan\theta = \dfrac{sin\theta}{cos\theta}}

  • \sf{cot\theta = \dfrac{cos\theta}{sin\theta}}

Some other important identities:-

  • \sf{sin^2\theta + cos^2\theta = 1}
  • \sf{\implies sin^2\theta = 1-cos^2\theta}
  • \sf{\implies cos^2\theta = 1-sin^2\theta}
  • \sf{1+tan^2\theta = sec^2\theta}
  • \sf{\implies sec^2\theta - tan^2\theta = 1}
  • \sf{\implies sec^2\theta - 1 = tan^2\theta}
  • \sf{1+cot^2\theta = cosec^2\theta}
  • \sf{\implies cosec^2\theta - cot^2\theta = 1}
  • \sf{\implies cosec^2\theta - 1 = cot^2\theta}

______________________________________

Similar questions