Math, asked by ghairahul005pakqo3, 6 months ago

pls answer this question



do no write anything else



random people who write anything for points will be reported and banned​

Attachments:

Answers

Answered by Λყυѕн
81

Given:

\sf{\sqrt 3}{sin \theta = cos \theta}

To Find:

\sf{\dfrac{3cos^2 \theta + 2cos \theta}{3cos \theta +2}}

Solution:

\sf{\sqrt 3}{sin \theta = cos \theta}

\sf{\implies}{\sqrt 3 =}{\dfrac{cos \theta}{sin \theta}}

\sf{\implies}{\sqrt 3 =}{cot \theta}

\sf{\implies}{\dfrac{1}{\sqrt 3}}{=}{\dfrac{P}{B}}

Comparing, we get, B= √3 and P=1

_________________________________________________________

From Pythagoras theorem,

\sf{H=}{\sqrt{B^2 + P^2}}

\sf{H=}{\sqrt{{\sqrt 3}^2 + 1}}

\sf{H=}{\sqrt{4}}

\sf{H=2}

__________________________________________________________

\sf{cos \theta =}{\dfrac{\sqrt 3}{2}}

__________________________________________________________

Substituting Values,

\sf{\implies}{\dfrac{{\dfrac{9}{4}}+\sqrt 3}{{\dfrac{3\sqrt 3}{2}} + 2}}

\sf{\implies}{\dfrac{9+4\sqrt3}{6\sqrt 3 +8}}

Rationalizing the denominator,

\sf{implies}{\dfrac{54\sqrt 3 - 32\sqrt 3}{44}}

Similar questions